1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//! A non exhaustive implementation of the most common tagged CBOR extension

use super::*;

/// CBOR Standard Date/Time String (Tag 0)
#[derive(Clone, Debug)]
pub struct StandardDateTime(TagValue, TextOwned);

/// CBOR Positive Bignum (Tag 2)
#[derive(Clone, Debug)]
pub struct PositiveBignum(TagValue, BytesOwned);

/// CBOR Negative Bignum (Tag 3)
#[derive(Clone, Debug)]
pub struct NegativeBignum(TagValue, BytesOwned);

/// CBOR data in CBOR (Tag 24)
#[derive(Clone, Debug)]
pub struct EncodedCBOR(TagValue, BytesOwned);

/// CBOR Rational (Tag 30)
#[derive(Clone, Debug)]
pub struct RationalNumber {
    tag: TagValue,
    len_encoding: StructureLength,
    numerator: RationalNumerator,
    denominator: RationalDenominator,
}

#[derive(Clone, Debug)]
pub enum RationalNumerator {
    Positive(Positive),
    Negative(Negative),
    PositiveBignum(PositiveBignum),
    NegativeBignum(NegativeBignum),
}

#[derive(Clone, Debug)]
pub enum RationalDenominator {
    Positive(Positive),
    PositiveBignum(PositiveBignum),
}

macro_rules! matches_tag {
    ($reader:ident, $value:literal) => {{
        let tag = $reader.tag()?;
        if tag.value() != $value {
            return Err(ReaderError::WrongExpectedTag {
                expected: $value,
                got: tag.value(),
            });
        }
        tag
    }};
}

macro_rules! encode_decode {
    ($type:ident) => {
        impl Decode for $type {
            fn decode<'a>(reader: &mut Reader<'a>) -> Result<Self, DecodeError> {
                $type::read(reader).map_err(|e| e.into())
            }
        }
        impl Encode for $type {
            fn encode(&self, writer: &mut Writer) {
                self.write(writer)
            }
        }
    };
}

impl StandardDateTime {
    pub fn read<'a>(reader: &mut Reader<'a>) -> Result<Self, ReaderError> {
        let tag = matches_tag!(reader, 0);
        let text = tag.read_data(|reader| reader.text())?;
        Ok(StandardDateTime(tag.tag_repr(), text.owned()))
    }

    fn write(&self, writer: &mut Writer) {
        writer.tag_build(self.0, |writer| writer.text(&self.1.borrow()));
    }
}

encode_decode!(StandardDateTime);

impl PositiveBignum {
    pub fn read<'a>(reader: &mut Reader<'a>) -> Result<Self, ReaderError> {
        let tag = matches_tag!(reader, 2);
        let bytes = tag.read_data(|reader| reader.bytes())?;
        Ok(PositiveBignum(tag.tag_repr(), bytes.owned()))
    }

    fn write(&self, writer: &mut Writer) {
        writer.tag_build(self.0, |writer| writer.bytes(&self.1.borrow()));
    }

    /// Write the bignum as a big endian representation
    pub fn to_be_bytes(&self) -> Vec<u8> {
        self.1.borrow().to_vec()
    }
}

encode_decode!(PositiveBignum);

impl NegativeBignum {
    pub fn read<'a>(reader: &mut Reader<'a>) -> Result<Self, ReaderError> {
        let tag = matches_tag!(reader, 3);
        let bytes = tag.read_data(|reader| reader.bytes())?;
        Ok(NegativeBignum(tag.tag_repr(), bytes.owned()))
    }
    fn write(&self, writer: &mut Writer) {
        writer.tag_build(self.0, |writer| writer.bytes(&self.1.borrow()));
    }

    /// Write the bignum as a big endian representation for -1 - n
    pub fn to_be_bytes(&self) -> Vec<u8> {
        self.1.borrow().to_vec()
    }
}

encode_decode!(NegativeBignum);

impl EncodedCBOR {
    pub fn read<'a>(reader: &mut Reader<'a>) -> Result<Self, ReaderError> {
        let tag = matches_tag!(reader, 24);
        let bytes = tag.read_data(|reader| reader.bytes())?;
        Ok(EncodedCBOR(tag.tag_repr(), bytes.owned()))
    }

    fn write(&self, writer: &mut Writer) {
        writer.tag_build(self.0, |writer| writer.bytes(&self.1.borrow()));
    }

    /// Get the CBOR data as Bytes
    pub fn to_bytes(&self) -> Vec<u8> {
        self.1.borrow().to_vec()
    }

    pub fn from_bytes(cbor_bytes: &[u8]) -> Self {
        EncodedCBOR(
            TagValue::from_u64(24),
            BytesOwned::from_vec(cbor_bytes.to_vec()),
        )
    }
}

encode_decode!(EncodedCBOR);

impl RationalNumber {
    pub fn read<'a>(reader: &mut Reader<'a>) -> Result<Self, ReaderError> {
        let tag = matches_tag!(reader, 30);
        let rational = tag.read_data(|reader| {
            let array = reader.array()?;
            if array.len() != 2 {
                return Err(ReaderError::WrongExpectedLength {
                    expected: 2,
                    got: array.len(),
                });
            }
            let numerator = {
                let mut inner_reader = array[0].reader();
                let res = match inner_reader.peek_type()? {
                    Type::Positive => inner_reader.positive().map(RationalNumerator::Positive),
                    Type::Negative => inner_reader.negative().map(RationalNumerator::Negative),
                    Type::Tag => PositiveBignum::read(&mut inner_reader)
                        .map(RationalNumerator::PositiveBignum)
                        .or_else(|_| {
                            NegativeBignum::read(&mut inner_reader)
                                .map(RationalNumerator::NegativeBignum)
                        }),
                    ty => Err(ReaderError::WrongExpectedTypes {
                        expected: &[Type::Positive, Type::Negative, Type::Tag],
                        got: ty,
                    }),
                }?;
                inner_reader.expect_finished()?;
                res
            };
            let denominator = {
                let mut inner_reader = array[1].reader();
                let res = match inner_reader.peek_type()? {
                    Type::Positive => inner_reader.positive().map(RationalDenominator::Positive),
                    Type::Tag => PositiveBignum::read(&mut inner_reader)
                        .map(RationalDenominator::PositiveBignum),
                    ty => Err(ReaderError::WrongExpectedTypes {
                        expected: &[Type::Positive, Type::Tag],
                        got: ty,
                    }),
                }?;
                inner_reader.expect_finished()?;
                res
            };
            Ok(RationalNumber {
                tag: tag.tag_repr(),
                len_encoding: array.len_encoding,
                numerator,
                denominator,
            })
        })?;
        Ok(rational)
    }

    fn write(&self, writer: &mut Writer) {
        // check that it's encoding a value of 2 if defined
        match self.len_encoding {
            StructureLength::Indefinite => {}
            StructureLength::Definite(v) if v.to_u64() == 2 => {}
            StructureLength::Definite(v) => {
                panic!("RationalNumber length encoding is not 2, {}", v.to_u64())
            }
        };
        writer.tag_build(self.tag, |writer| {
            writer.array_build(self.len_encoding, |writer| {
                match &self.numerator {
                    RationalNumerator::Positive(v) => writer.positive(*v),
                    RationalNumerator::Negative(v) => writer.negative(*v),
                    RationalNumerator::PositiveBignum(v) => v.write(writer),
                    RationalNumerator::NegativeBignum(v) => v.write(writer),
                };
                match &self.denominator {
                    RationalDenominator::Positive(v) => writer.positive(*v),
                    RationalDenominator::PositiveBignum(v) => v.write(writer),
                }
            })
        })
    }

    pub fn numerator(&self) -> &RationalNumerator {
        &self.numerator
    }

    pub fn denominator(&self) -> &RationalDenominator {
        &self.denominator
    }
}

encode_decode!(RationalNumber);