cbit/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#![allow(rustdoc::redundant_explicit_links)] // For cargo-rdme's sake

//! A proc-macro to use callback-based iterators with `for`-loop syntax and functionality.
//!
//! ## Overview
//!
//! `cbit` (short for **c**losure-**b**ased **it**erator) is a crate which allows you to use iterator
//! functions which call into a closure to process each element as if they were just a regular Rust
//! [`Iterator`](::std::iter::Iterator) in a `for` loop. To create an iterator, just define a function
//! which takes in a closure as its last argument. Both the function and the closure must return a
//! [`ControlFlow`](::std::ops::ControlFlow) object with some generic `Break` type.
//!
//! ```
//! use std::ops::ControlFlow;
//!
//! fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
//!     for i in 0..n {
//!         f(i)?;
//!     }
//!     ControlFlow::Continue(())
//! }
//! ```
//!
//! From there, you can use the iterator like a regular `for`-loop by driving it using the
//! [`cbit!`](crate::cbit!) macro.
//!
//! ```rust
//! # use std::ops::ControlFlow;
//! # fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
//! #     for i in 0..n {
//! #         f(i)?;
//! #     }
//! #     ControlFlow::Continue(())
//! # }
//! fn demo(n: u64) -> u64 {
//!     let mut c = 0;
//!     cbit::cbit!(for i in up_to(n) {
//!         c += i;
//!     });
//!     c
//! }
//! ```
//!
//! Although the body of the `for` loop is technically nested in a closure, it supports all the
//! regular control-flow mechanisms one would expect:
//!
//! You can early-`return` to the outer function...
//!
//! ```rust
//! # use std::ops::ControlFlow;
//! # fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
//! #     for i in 0..n {
//! #         f(i)?;
//! #     }
//! #     ControlFlow::Continue(())
//! # }
//! fn demo(n: u64) -> u64 {
//!     let mut c = 0;
//!     cbit::cbit!(for i in up_to(n) {
//!         c += i;
//!         if c > 1000 {
//!             return u64::MAX;
//!         }
//!     });
//!     c
//! }
//!
//! assert_eq!(demo(500), u64::MAX);
//! ```
//!
//! You can `break` and `continue` in the body...
//!
//! ```rust
//! # use std::ops::ControlFlow;
//! # fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
//! #     for i in 0..n {
//! #         f(i)?;
//! #     }
//! #     ControlFlow::Continue(())
//! # }
//! fn demo(n: u64) -> u64 {
//!     let mut c = 0;
//!     cbit::cbit!('me: for i in up_to(n) {
//!         if i == 2 {
//!             continue 'me;  // This label is optional.
//!         }
//!
//!         c += i;
//!
//!         if c > 5 {
//!             break;
//!         }
//!     });
//!     c
//! }
//!
//! assert_eq!(demo(5), 1 + 3 + 4);
//! ```
//!
//! And you can even `break` and `continue` to scopes outside the body!
//!
//! ```rust
//! # use std::ops::ControlFlow;
//! # fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
//! #     for i in 0..n {
//! #         f(i)?;
//! #     }
//! #     ControlFlow::Continue(())
//! # }
//! fn demo(n: u64) -> u64 {
//!     let mut c = 0;
//!     'outer_1: loop {
//!         let something = 'outer_2: {
//!             cbit::cbit!(for i in up_to(n) break loop 'outer_1, 'outer_2 {
//!                 if i == 5 && c < 20 {
//!                     continue 'outer_1;
//!                 }
//!                 if i == 8 {
//!                     break 'outer_2 c < 10;
//!                 }
//!                 c += i;
//!             });
//!             false
//!         };
//!
//!         if something {
//!             assert!(c < 10);
//!         } else {
//!             break;
//!         }
//!     }
//!     c
//! }
//!
//! demo(10);  // I'm honestly not really sure what this function is supposed to do.
//! ```
//!
//! Check the documentation of [`cbit!`] for more details on its syntax and specific behavior.
//!
//! ## Advantages and Drawbacks
//!
//! Closure-based iterators play much nicer with the Rust optimizer than coroutines and their
//! [stable `async` userland counterpart](https://docs.rs/genawaiter/latest/genawaiter/) do
//! as of `rustc 1.74.0`.
//!
//! Here is the disassembly of a regular loop implementation of factorial:
//!
//! ```
//! pub fn regular(n: u64) -> u64 {
//!     let mut c = 0;
//!     for i in 0..n {
//!         c += i;
//!     }
//!     c
//! }
//! ```
//!
//! ```text
//! asm::regular:
//! Lfunc_begin7:
//!         push rbp
//!         mov rbp, rsp
//!         test rdi, rdi
//!         je LBB7_1
//!         lea rax, [rdi - 1]
//!         lea rcx, [rdi - 2]
//!         mul rcx
//!         shld rdx, rax, 63
//!         lea rax, [rdi + rdx - 1]
//!         pop rbp
//!         ret
//! LBB7_1:
//!         xor eax, eax
//!         pop rbp
//!         ret
//! ```
//!
//! ...and here is the disassembly of the loop reimplemented in cbit:
//!
//! ```
//! use std::ops::ControlFlow;
//!
//! pub fn cbit(n: u64) -> u64 {
//!     let mut c = 0;
//!     cbit::cbit!(for i in up_to(n) {
//!         c += i;
//!     });
//!     c
//! }
//!
//! fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
//!     for i in 0..n {
//!         f(i)?;
//!     }
//!     ControlFlow::Continue(())
//! }
//! ```
//!
//! ```text
//! asm::cbit:
//! Lfunc_begin8:
//!         push rbp
//!         mov rbp, rsp
//!         test rdi, rdi
//!         je LBB8_1
//!         lea rax, [rdi - 1]
//!         lea rcx, [rdi - 2]
//!         mul rcx
//!         shld rdx, rax, 63
//!         lea rax, [rdi + rdx - 1]
//!         pop rbp
//!         ret
//! LBB8_1:
//!         xor eax, eax
//!         pop rbp
//!         ret
//! ```
//!
//! Except for the label names, they're entirely identical!
//!
//! Meanwhile, the same example written with `rustc 1.76.0-nightly (49b3924bd 2023-11-27)`'s coroutines
//! yields far worse codegen ([permalink](https://godbolt.org/z/Kjh9q195s)):
//!
//! ```no_compile
//! #![feature(coroutines, coroutine_trait, iter_from_coroutine)]
//!
//! use std::{iter::from_coroutine, ops::Coroutine};
//!
//! fn upto_n(n: u64) -> impl Coroutine<Yield = u64, Return = ()> {
//!     move || {
//!         for i in 0..n {
//!             yield i;
//!         }
//!     }
//! }
//!
//! pub fn sum(n: u64) -> u64 {
//!     let mut c = 0;
//!     let mut co = std::pin::pin!(upto_n(n));
//!     for i in from_coroutine(co) {
//!         c += i;
//!     }
//!     c
//! }
//! ```
//!
//! ```text
//! example::sum:
//!         xor     edx, edx
//!         xor     eax, eax
//!         test    edx, edx
//!         je      .LBB0_4
//! .LBB0_2:
//!         cmp     edx, 3
//!         jne     .LBB0_3
//!         cmp     rcx, rdi
//!         jb      .LBB0_7
//!         jmp     .LBB0_6
//! .LBB0_4:
//!         xor     ecx, ecx
//!         cmp     rcx, rdi
//!         jae     .LBB0_6
//! .LBB0_7:
//!         setb    dl
//!         movzx   edx, dl
//!         add     rax, rcx
//!         add     rcx, rdx
//!         lea     edx, [2*rdx + 1]
//!         test    edx, edx
//!         jne     .LBB0_2
//!         jmp     .LBB0_4
//! .LBB0_6:
//!         ret
//! .LBB0_3:
//!         push    rax
//!         lea     rdi, [rip + str.0]
//!         lea     rdx, [rip + .L__unnamed_1]
//!         mov     esi, 34
//!         call    qword ptr [rip + core::panicking::panic@GOTPCREL]
//!         ud2
//! ```
//!
//! A similar thing can be seen with userland implementations of this feature such as
//! [`genawaiter`](https://docs.rs/genawaiter/latest/genawaiter/index.html).
//!
//! However, what more general coroutine implementations provide in exchange for potential performance
//! degradation is immense expressivity. Fundamentally, `cbit` iterators cannot be interwoven, making
//! adapters such as `zip` impossible to implement—something coroutines have no problem doing.

use proc_macro2::{Ident, Span, TokenStream};
use quote::quote;
use syn::{punctuated::Punctuated, Lifetime, Token};
use syntax::CbitForExpr;

mod syntax;

/// A proc-macro to use callback-based iterators with for-loop syntax and functionality.
///
/// ## Syntax
///
/// ```text
/// ('<loop-label: lifetime>:)? for <binding: pattern> in <iterator: function-call-expr>
///     (break ((loop)? '<extern-label: lifetime>)*)?
/// {
///     <body: token stream>
/// }
/// ```
///
/// Arguments:
///
/// - `loop-label`: This is the optional label used by your virtual loop. `break`'ing or `continue`'ing
///   to this label will break out of and continue the cbit iterator respectively.
/// - `binding`: This is the irrefutable pattern the iterator's arguments will be decomposed into.
/// - `iterator`: Syntactically, this can be any (potentially generic) function or method call
///   expression and generics can be explicitly supplied if desired. See the [iteration protocol](#iteration-protocol)
///   section for details on the semantic requirements for this function.
/// - The loop also contains an optional list of external control-flow labels which is started by the
///   `break` keyword and is followed by a non-empty non-trailing comma-separated list of...
///      - An optional `loop` keyword which, if specified, asserts that the label can accept `continue`s
///        in addition to `break`s.
///      - `extern-label`: the label the `cbit!` body is allowed to `break` or `continue` out to.
///
/// ## Iteration Protocol
///
/// The called function or method can take on any non-zero number of arguments but must accept a
/// single-argument function closure as its last argument. The closure must be able to return a
/// [`ControlFlow`](::std::ops::ControlFlow) object with a generic `Break` type and the function must
/// return a `ControlFlow` object with the same `Break` type.
///
/// ```
/// use std::{iter::IntoIterator, ops::ControlFlow};
///
/// // A simple example...
/// fn up_to<B>(n: u64, mut f: impl FnMut(u64) -> ControlFlow<B>) -> ControlFlow<B> {
///     for i in 0..n {
///         f(i)?;
///     }
///     ControlFlow::Continue(())
/// }
///
/// // A slightly more involved example...
/// fn enumerate<I: IntoIterator, B>(
///     values: I,
///     index_offset: usize,
///     mut f: impl FnMut((usize, I::Item),
/// ) -> ControlFlow<B>) -> ControlFlow<B> {
///     for (i, v) in values.into_iter().enumerate() {
///         f((i + index_offset, v))?;
///     }
///     ControlFlow::Continue(())
/// }
/// ```
///
/// The `Continue` parameter of the `ControlFlow` objects, meanwhile, is a lot more flexible. The
/// `Continue` parameter on the return type of the inner closure designates the type users are expected
/// to give back to the calling iterator function. Since users can run `continue` in the body, this
/// type must implement [`Default`].
///
/// The `Continue` parameter on the return type of the iterator function, meanwhile, can be used to
/// return values from the `cbit!` macro expression. If users `break` out of loops with a non-unit
/// output `Continue` type, they must provide this value themself.
///
/// ```
/// use std::ops::ControlFlow;
///
/// fn demo(list: &[i32]) -> i32 {
///     cbit::cbit!(for (accum, value) in reduce(0, list) {
///         if *value > 100 {
///             break -1;
///         }
///         accum + value
///     })
/// }
///
/// fn reduce<T, I: IntoIterator, B>(
///     initial: T,
///     values: I,
///     mut f: impl FnMut((T, I::Item)) -> ControlFlow<B, T>,
/// ) -> ControlFlow<B, T> {
///     let mut accum = initial;
///     for value in values {
///         accum = f((accum, value))?;
///     }
///     ControlFlow::Continue(accum)
/// }
///
/// assert_eq!(demo(&[1, 2, 3]), 6);
/// assert_eq!(demo(&[1, 2, 3, 4, 101, 8]), -1);
/// ```
#[proc_macro]
pub fn cbit(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let input = syn::parse_macro_input!(input as CbitForExpr);

    // Define some common syntax trees
    let core_ = quote! { ::core };
    let ops_ = quote! { #core_::ops };
    let pin_ = quote! { #core_::pin };
    let task_ = quote! { #core_::task };
    let future_ = quote! { #core_::future };
    let option_ = quote! { #core_::option::Option };

    // Extract our break labels
    let empty_punct_list = Punctuated::new();
    let in_break_labels = input
        .breaks
        .as_ref()
        .map_or(&empty_punct_list, |breaks| &breaks.lt);

    let derive_early_break_variant_name =
        |lt: &Lifetime| Ident::new(&format!("EarlyBreakTo_{}", lt.ident), lt.span());

    let derive_early_continue_variant_name =
        |lt: &Lifetime| Ident::new(&format!("EarlyContinueTo_{}", lt.ident), lt.span());

    // Define an enum for our control flow
    let control_flow_enum_def;
    let control_flow_ty_decl;
    let control_flow_ty_use;
    {
        let break_variant_names = in_break_labels
            .iter()
            .map(|v| derive_early_break_variant_name(&v.lt))
            .collect::<Vec<_>>();

        let continue_variant_names = in_break_labels
            .iter()
            .filter(|&v| v.kw_loop.is_some())
            .map(|v| derive_early_continue_variant_name(&v.lt));

        control_flow_enum_def = quote! {
            #[allow(non_camel_case_types)]
            #[allow(clippy::enum_variant_names)]
            enum OurControlFlowResult<EarlyReturn, EarlyBreak #(, #break_variant_names)*> {
                EarlyReturn(EarlyReturn),
                EarlyBreak(EarlyBreak),
                #(#break_variant_names (#break_variant_names),)*
                #(#continue_variant_names,)*
            }
        };

        control_flow_ty_decl = quote! {
            #[allow(non_camel_case_types)]
            type OurControlFlow<EarlyReturn, EarlyBreak #(, #break_variant_names)*> = #ops_::ControlFlow<
                OurControlFlowResult<EarlyReturn, EarlyBreak #(, #break_variant_names)*>,
                EarlyBreak,
            >;
        };

        let underscores =
            (0..(break_variant_names.len() + 2)).map(|_| Token![_](Span::call_site()));

        control_flow_ty_use = quote! { OurControlFlow<#(#underscores),*> };
    }

    // Define our initial break layer
    let aborter = |resolution: TokenStream| {
        quote! {
            how_to_resolve_pending = #option_::Some(#resolution);
            #future_::pending::<()>().await;
            #core_::unreachable!();
        }
    };

    let for_body = input.body.body;
    let for_body = {
        let optional_label = &input.label;
        let break_aborter = aborter(quote! {
            #ops_::ControlFlow::Break(OurControlFlowResult::EarlyBreak(break_result))
        });

        quote! {
            '__cbit_absorber_magic_innermost: {
                let mut did_run = false;
                let break_result = #optional_label loop {
                    if did_run {
                        // The user must have used `continue`.
                        break '__cbit_absorber_magic_innermost #core_::default::Default::default();
                    }

                    did_run = true;
                    let break_result = { #for_body };

                    // The user completed the loop.
                    #[allow(unreachable_code)]
                    break '__cbit_absorber_magic_innermost break_result;
                };

                // The user broke out of the loop.
                #[allow(unreachable_code)]
                {
                    #break_aborter
                }
            }
        }
    };

    // Build up an onion of user-specified break layers
    let for_body = {
        let mut for_body = for_body;
        for break_label_entry in in_break_labels {
            let break_label = &break_label_entry.lt;

            let break_aborter = {
                let variant_name = derive_early_break_variant_name(break_label);
                aborter(quote! {
                    #ops_::ControlFlow::Break(OurControlFlowResult::#variant_name(break_result))
                })
            };

            let outer_label = Lifetime::new(
                &format!("'__cbit_absorber_magic_for_{}", break_label.ident),
                break_label.span(),
            );

            if break_label_entry.kw_loop.is_some() {
                let continue_aborter = {
                    let variant_name = derive_early_continue_variant_name(break_label);
                    aborter(quote! {
                        #ops_::ControlFlow::Break(OurControlFlowResult::#variant_name)
                    })
                };

                for_body = quote! {#outer_label: {
                    let mut did_run = false;
                    let break_result = #break_label: loop {
                        if did_run {
                            // The user must have used `continue`.
                            #continue_aborter
                        }

                        did_run = true;
                        let break_result = { #for_body };

                        // The user completed the loop.
                        #[allow(unreachable_code)]
                        break #outer_label break_result;
                    };

                    // The user broke out of the loop.
                    #[allow(unreachable_code)]
                    {
                        #break_aborter
                    }
                }};
            } else {
                for_body = quote! {#outer_label: {
                    let break_result = #break_label: {
                        let break_result = { #for_body };

                        // The user completed the loop.
                        #[allow(unreachable_code)]
                        break #outer_label break_result;
                    };

                    // The user broke out of the block.
                    #[allow(unreachable_code)]
                    {
                        #break_aborter
                    }
                }};
            }
        }

        for_body
    };

    // Build up a layer to capture early returns and generally process arguments
    let for_body = {
        let body_input_pat = &input.body_pattern;
        let termination_aborter = aborter(quote! { #ops_::ControlFlow::Continue(end_result) });
        quote! {
            |#body_input_pat| {
                let mut how_to_resolve_pending = #option_::None;

                let body = #pin_::pin!(async {
                    let end_result = { #for_body };

                    #[allow(unreachable_code)] { #termination_aborter }
                });

                match #future_::Future::poll(
                    body,
                    &mut #task_::Context::from_waker(&{  // TODO: Use `Waker::noop` once it stabilizes
                        const VTABLE: #task_::RawWakerVTable = #task_::RawWakerVTable::new(
                            // Cloning just returns a new no-op raw waker
                            |_| RAW,
                            // `wake` does nothing
                            |_| {},
                            // `wake_by_ref` does nothing
                            |_| {},
                            // Dropping does nothing as we don't allocate anything
                            |_| {},
                        );
                        const RAW: #task_::RawWaker = #task_::RawWaker::new(#core_::ptr::null(), &VTABLE);
                        unsafe { #task_::Waker::from_raw(RAW) }
                    })
                ) {
                    #task_::Poll::Ready(early_return) => #ops_::ControlFlow::Break(
                        OurControlFlowResult::EarlyReturn(early_return),
                    ),
                    #task_::Poll::Pending => how_to_resolve_pending.expect(
                        "the async block in a cbit iterator is an implementation detail; do not \
                         `.await` in it!"
                    ),
                }
            }
        }
    };

    // Build up a list of break/continue handlers
    let break_out_matchers = in_break_labels.iter().map(|v| {
        let lt = &v.lt;
        let variant_name = derive_early_break_variant_name(lt);
        quote! {
            OurControlFlowResult::#variant_name(break_out) => break #lt break_out,
        }
    });

    let continue_out_matchers = in_break_labels
        .iter()
        .filter(|v| v.kw_loop.is_some())
        .map(|v| {
            let lt = &v.lt;
            let variant_name = derive_early_continue_variant_name(lt);
            quote! {
                OurControlFlowResult::#variant_name => continue #lt,
            }
        });

    // Build up our function call site
    let driver_call_site = match &input.call {
        syntax::AnyCallExpr::Function(call) => {
            let driver_attrs = &call.attrs;
            let driver_fn_expr = &call.func;
            let driver_fn_args = call.args.iter();

            quote! {
                #(#driver_attrs)*
                let result: #control_flow_ty_use = #driver_fn_expr (#(#driver_fn_args,)* #for_body);
            }
        }
        syntax::AnyCallExpr::Method(call) => {
            let driver_attrs = &call.attrs;
            let driver_receiver_expr = &call.receiver;
            let driver_method = &call.method;
            let driver_turbo = &call.turbofish;
            let driver_fn_args = call.args.iter();

            quote! {
                #(#driver_attrs)*
                let result: #control_flow_ty_use =
                    #driver_receiver_expr.#driver_method #driver_turbo (
                        #(#driver_fn_args,)*
                        #for_body
                    );
            }
        }
    };

    // Put it all together
    quote! {{
        // enum ControlFlowResult<...> { ... }
        #control_flow_enum_def

        // type ControlFlow<A, B, ...> = core::ops::ControlFlow<ControlFlowResult<A, B, ...>, A>;
        #control_flow_ty_decl

        // let result = my_fn(args, |...| async { ... });
        #driver_call_site

        match result {
            #ops_::ControlFlow::Break(result) => match result {
                OurControlFlowResult::EarlyReturn(early_result) => return early_result,
                OurControlFlowResult::EarlyBreak(result) => result,
                #(#break_out_matchers)*
                #(#continue_out_matchers)*
            },
            #ops_::ControlFlow::Continue(result) => result,
        }
    }}
    .into()
}