1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use crate::constraints::{resolve_2, Constraint, ResolveFn, VarWatch};
use crate::goals::{unify, Any, Goal};
use crate::lvec::LVec;
use crate::{State, Unify, Value};
use std::fmt::Debug;
use std::iter::repeat;
use std::rc::Rc;

/**
Assert that [`LVec`] `a` is a subset of [`LVec`] `b`.

This means that all of the items in `a` unify with a contiguous run of items in `b`.

This goal will fork the state for each match found.
# Examples:
```
use canrun::{LVar, all, unify, lvec, Query};

let needle = LVar::new();
let haystack = LVar::new();
let goal = all![
    unify(&needle, lvec![1]),
    unify(&haystack, lvec![1, 2, 3]),
    lvec::subset(&needle, haystack),
];
let results: Vec<_> = goal.query(needle).collect();
assert_eq!(results, vec![vec![1]]);
```
*/
pub fn subset<T, SV, CV>(subset: SV, collection: CV) -> Subset<T>
where
    T: Unify,
    SV: Into<Value<LVec<T>>>,
    LVec<T>: Unify,
    CV: Into<Value<LVec<T>>>,
{
    Subset {
        subset: subset.into(),
        collection: collection.into(),
    }
}
/**
Assert that [`LVec`] `a` is a subset of [`LVec`] `b`. Create with [`subset`].
*/
#[derive(Debug)]
pub struct Subset<T: Unify> {
    subset: Value<LVec<T>>,
    collection: Value<LVec<T>>,
}

impl<T: Unify> Clone for Subset<T> {
    fn clone(&self) -> Self {
        Self {
            subset: self.subset.clone(),
            collection: self.collection.clone(),
        }
    }
}

impl<T: Unify> Goal for Subset<T> {
    fn apply(&self, state: State) -> Option<State> {
        state.constrain(Rc::new(self.clone()))
    }
}

impl<T: Unify> Constraint for Subset<T> {
    fn attempt(&self, state: &State) -> Result<ResolveFn, VarWatch> {
        let (subset, collection) = resolve_2(&self.subset, &self.collection, state)?;

        let col_size = collection.len();
        let sub_size = subset.len();

        if col_size < sub_size {
            Ok(Box::new(|_| None))
        } else {
            let subset: LVec<T> = subset.vec.clone().into();
            let goals: Vec<_> = (0..=col_size - sub_size)
                .zip(repeat(Value::new(subset)))
                .map(move |(index, subset)| {
                    // TODO: Add some sort of slicing concept to LVec that avoids creating new vectors
                    let superset: LVec<T> = collection.vec[index..index + sub_size].into();
                    Rc::new(unify(subset, superset)) as Rc<dyn Goal>
                })
                .collect();
            Ok(Box::new(|state| Any::from(goals).apply(state)))
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::goal_vec;
    use crate::goals::{either, unify};
    use crate::{lvec, LVar};

    #[test]
    fn basic_subset() {
        let x = LVar::new();
        let goals = goal_vec![lvec::subset(lvec![x, 2], lvec![1, 2, 3])];
        goals.assert_permutations_resolve_to(x, vec![1]);
    }

    #[test]
    fn subset_with_conditions() {
        let x = LVar::new();
        let goals = goal_vec![unify(x, 3), lvec::subset(lvec![2, x], lvec![1, 2, 3])];
        goals.assert_permutations_resolve_to(x, vec![3]);
    }

    #[test]
    fn unify_two_subsets_1() {
        let x = LVar::new();
        let list = lvec![1, 2, 3];
        let goals = goal_vec![
            lvec::subset(lvec![1], &x),
            lvec::subset(lvec![2], &x),
            unify(&x, list),
        ];
        goals.assert_permutations_resolve_to(x, vec![vec![1, 2, 3]]);
    }

    #[test]
    fn unify_two_subsets_2() {
        let x = LVar::new();
        let list = lvec![1, 2, 3];
        let goals = goal_vec![
            lvec::subset(lvec![1], &x),
            lvec::subset(lvec![2], &x),
            unify(&x, list),
        ];
        goals.assert_permutations_resolve_to(x, vec![vec![1, 2, 3]]);
    }

    #[test]
    fn unify_two_subsets_3() {
        let x = LVar::new();
        let list = lvec![1, 2, 3];
        let goals = goal_vec![
            either(lvec::subset(lvec![1, 2], &x), lvec::subset(lvec![4], &x)),
            lvec::subset(lvec![2, 3], &x),
            unify(&x, list),
        ];
        goals.assert_permutations_resolve_to(x, vec![vec![1, 2, 3]]);
    }

    #[test]
    fn unify_two_subsets_4() {
        let x = LVar::new();
        let list = lvec![1, 2, 3];
        let goals = goal_vec![
            lvec::subset(lvec![1, 2], &x),
            lvec::subset(lvec![4], &x),
            unify(&x, list),
        ];

        goals.assert_permutations_resolve_to(x, vec![]);
    }

    #[test]
    fn subset_against_smaller() {
        let x = LVar::new();
        let goals = goal_vec![lvec::subset(lvec![x, 2], lvec![1])];
        goals.assert_permutations_resolve_to(x, vec![]);
    }

    #[test]
    fn debug_impl() {
        let goal = lvec::subset(lvec![1], lvec![1, 2]);
        assert_ne!(format!("{goal:?}"), "")
    }
}