1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
//! Algorithms to reduce combinatorial structures modulo isomorphism.
//!
//! This can typically be use to to test if two graphs are isomorphic.
//!```
//!use canonical_form::*;
//!
//!// Simple Graph implementation as adjacency list
//!#[derive(Ord, PartialOrd, PartialEq, Eq, Clone, Debug)]
//!struct Graph {
//!       adj: Vec<Vec<usize>>,
//!}
//!
//!
//!impl Graph {
//!    fn new(n: usize, edges: &[(usize, usize)]) -> Self {
//!        let mut adj = vec![Vec::new(); n];
//!        for &(u, v) in edges {
//!            adj[u].push(v);
//!            adj[v].push(u);
//!        }
//!        Graph { adj }
//!    }
//!}
//!
//!// The Canonize trait allows to use the canonial form algorithms
//!impl Canonize for Graph {
//!    fn size(&self) -> usize {
//!        self.adj.len()
//!    }
//!    fn apply_morphism(&self, perm: &[usize]) -> Self {
//!        let mut adj = vec![Vec::new(); self.size()];
//!        for (i, nbrs) in self.adj.iter().enumerate() {
//!            adj[perm[i]] = nbrs.iter().map(|&u| perm[u]).collect();
//!            adj[perm[i]].sort();
//!        }
//!        Graph { adj }
//!    }
//!    fn invariant_neighborhood(&self, u: usize) -> Vec<Vec<usize>> {
//!        vec![self.adj[u].clone()]
//!    }
//!}
//!
//!// Usage of library functions
//!let c5 = Graph::new(5, &[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]);
//!let other_c5 = Graph::new(5, &[(0, 2), (2, 1), (1, 4), (4, 3), (3, 0)]);
//!assert_eq!(canonical_form(&c5), canonical_form(&other_c5));
//!
//!let p5 = Graph::new(5, &[(0, 1), (1, 2), (2, 3), (3, 4)]);
//!assert!(canonical_form(&c5) != canonical_form(&p5));
//!
//!let p = canonical_form_morphism(&c5);
//!assert_eq!(c5.apply_morphism(&p), canonical_form(&c5));
//!```

#![warn(
    missing_docs,
    missing_debug_implementations,
    missing_copy_implementations,
    trivial_casts,
    trivial_numeric_casts,
    unsafe_code,
    unstable_features,
    unused_import_braces,
    unused_qualifications,
    unused_labels,
    unused_results
)]

mod refine;

use crate::refine::Partition;
use std::collections::BTreeMap;

/// Objects that can be reduced modulo the actions of a permutation group.
///
/// An object implement this trait if it has elements
/// and if the group of permutations on of this elements
/// acts on the object.
pub trait Canonize
where
    Self: Sized + Ord + Clone,
{
    /// Returns the number of vertices.
    ///
    /// The elements of `x` are assimilated to the number of `0..x.self()`.
    fn size(&self) -> usize;

    /// Returns the result of the action of a permuation `perm` on the object.
    ///
    /// The permutation `perm` is represented as a slice of size `self.size()`
    /// where `perm[u]` is the image of `u` by the permutation.
    fn apply_morphism(&self, perm: &[usize]) -> Self;

    /// Can return a coloring that is invariant by isomorphism.
    ///
    /// This coloring is expressed as a vector `c` such that `c[u]`
    /// is the color of `u`. It need to satisfy the property that if
    /// `c[u]` and `c[v]` are different then no automorphism of `self`
    /// maps `u` to `v`.
    fn invariant_coloring(&self) -> Option<Vec<u64>> {
        None
    }

    /// Return lists of vertices that are invariant isomorphism.
    ///
    /// The output `inv` is a vector such that each `inv[i]` is a vector
    /// of distinct vertices `[v1, ..., vk]`
    /// (so the `vi`  elements of `0..self.size()`) such that
    /// for every permutation `perm`,
    /// `self.invariant_neighborhood(perm[u])[i]`
    /// is equal to `[perm[v1], ..., perm[vk]]` up to reordering.
    ///
    /// The length of the output (the number of lists) has to be independent
    /// of `u`.
    fn invariant_neighborhood(&self, _u: usize) -> Vec<Vec<usize>> {
        Vec::new()
    }
}

/// Return the next part to be refined.
/// This part is chosen as a smallest part with at least 2 elements.
/// Return None is the partition is discrete.
fn target_selector(part: &Partition) -> Option<usize> {
    let mut min = std::usize::MAX;
    let mut arg_min = None;
    for i in part.parts() {
        let length = part.part(i).len();
        if 2 <= length && (length < min) {
            min = length;
            arg_min = Some(i);
        }
    }
    arg_min
}

/// Compute the coarsest refinement of `partition` with part undistinguishable
/// by the invarriants.
fn refine<F>(partition: &mut Partition, g: &F)
where
    F: Canonize,
{
    if !partition.is_discrete() {
        let n = g.size();
        assert!(n >= 2);
        // Apply coloring if any
        if let Some(coloring) = g.invariant_coloring() {
            partition.refine_by_value(&coloring, |_| {})
        }
        // Precompute invariants
        let mut invariants = Vec::with_capacity(n);
        for i in 0..n {
            invariants.push(g.invariant_neighborhood(i))
        }
        let invariant_size = invariants[0].len();
        assert!(invariants.iter().all(|v| v.len() == invariant_size));
        let mut crible = vec![0; n];
        // Stack contains the new created partitions
        let mut stack: Vec<_> = partition.parts();
        // base
        let m = (n + 1) as u64;
        let step = m.pow(invariant_size as u32);
        let threshold = std::u64::MAX / step;
        while !stack.is_empty() && !partition.is_discrete() {
            // Re-initialize crible
            for e in &mut crible {
                *e = 0;
            }
            let mut weight = 1;
            while let Some(part) = stack.pop() {
                for i in 0..invariant_size {
                    weight *= m;
                    // Compute crible and new_part
                    for &u in partition.part(part) {
                        for &v in &invariants[u][i] {
                            crible[v] += weight;
                        }
                    }
                }
                if weight > threshold {
                    break;
                };
            }
            partition.refine_by_value(&crible, |new| {
                stack.push(new);
            });
        }
    }
}

// Return the first index on which `u` and `v` differ.
fn fca(u: &[usize], v: &[usize]) -> usize {
    let mut i = 0;
    while i < u.len() && i < v.len() && u[i] == v[i] {
        i += 1;
    }
    i
}

/// Node of the tree of the normalization process
#[derive(Clone, Debug)]
struct IsoTreeNode {
    pi: Partition,
    children: Vec<usize>,
}

impl IsoTreeNode {
    fn new<F: Canonize>(mut partition: Partition, g: &F) -> Self {
        refine(&mut partition, g);
        IsoTreeNode {
            children: match target_selector(&partition) {
                Some(set) => partition.part(set).to_vec(),
                None => Vec::new(),
            },
            pi: partition,
        }
    }
    fn explore<F: Canonize>(&self, v: usize, g: &F) -> Self {
        let mut new_pi = self.pi.clone();
        new_pi.individualize(v);
        refine(&mut new_pi, g);
        Self::new(new_pi, g)
    }
    fn empty() -> Self {
        IsoTreeNode {
            children: Vec::new(),
            pi: Partition::simple(0),
        }
    }
}

/// Normal form of `g` under the action of isomorphisms that
/// stabilize the parts of `partition`.
fn canonical_form_constraint<F>(g: &F, partition: Partition) -> F
where
    F: Canonize,
{
    let mut zeta: BTreeMap<F, Vec<usize>> = BTreeMap::new();
    // initialisation
    let mut tree = Vec::new();
    let mut path = Vec::new();
    let mut node = IsoTreeNode::new(partition, g);
    loop {
        if let Some(phi) = node.pi.as_bijection() {
            //if node is a leaf
            let phi_g = g.apply_morphism(phi);
            if let Some(u) = zeta.get(&phi_g) {
                let k = fca(u, &path) + 1;
                tree.truncate(k);
                path.truncate(k);
            } else {
                let _ = zeta.insert(phi_g, path.clone());
            }
        };
        if let Some(u) = node.children.pop() {
            path.push(u);
            let new_node = node.explore(u, g);
            tree.push(node);
            node = new_node;
        } else {
            match tree.pop() {
                Some(n) => {
                    node = n;
                    let _ = path.pop();
                }
                None => break,
            }
        }
    }
    zeta.keys().next_back().unwrap().clone()
}

/// Iterator on the automorphisms of a combinatorial structure.
#[derive(Clone, Debug)]
pub struct AutomorphismIterator<F> {
    tree: Vec<IsoTreeNode>,
    node: IsoTreeNode,
    g: F,
}

impl<F: Canonize> AutomorphismIterator<F> {
    /// Iterator on the automorphisms of `g` that preserve `partition`.
    fn with_partition(g: &F, partition: Partition) -> Self {
        assert!(*g == canonical_form_constraint(g, partition.clone()));
        AutomorphismIterator {
            tree: vec![IsoTreeNode::new(partition, g)],
            node: IsoTreeNode::empty(), // Dummy node that will be unstacked at the first iteration
            g: g.clone(),
        }
    }
    /// Create the iterator on the automorphisms of `g`
    /// rooted on the `sigma` first vertices.
    pub fn typed(g: &F, sigma: usize) -> Self {
        let mut partition = Partition::simple(g.size());
        for i in 0..sigma {
            partition.individualize(i)
        }
        Self::with_partition(g, partition)
    }
    /// Create the iterator on the automorphisms of `g`.
    pub fn new(g: &F) -> Self {
        Self::typed(g, 0)
    }
}

impl<F: Canonize> Iterator for AutomorphismIterator<F> {
    type Item = Vec<usize>;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            if let Some(u) = self.node.children.pop() {
                let new_node = self.node.explore(u, &self.g);
                let old_node = std::mem::replace(&mut self.node, new_node);
                self.tree.push(old_node)
            } else {
                match self.tree.pop() {
                    Some(n) => self.node = n,
                    None => return None,
                }
            }
            if let Some(phi) = self.node.pi.as_bijection() {
                if self.g.apply_morphism(phi) == self.g {
                    return Some(phi.to_vec());
                }
            };
        }
    }
}

/// Normal form of `g` modulo the isomorphisms that
/// stabilize the sigma first vertices.
pub fn canonical_form_typed<F>(g: &F, sigma: usize) -> F
where
    F: Canonize,
{
    let mut partition = Partition::simple(g.size());
    for i in 0..sigma {
        partition.individualize(i)
    }
    canonical_form_constraint(&g, partition)
}

/// Computes a normal form of a combinatorial object.
///
/// A normal form is a function that assigns to an object `g` (e.g. a graph)
/// an object `canonical_form(g)` that is isomorphic to `g`
/// such that if `g1` and `g2` are isomorphic then
/// `canonical_form(g)=canonical_form(g)`.
/// The exact specification of this function does not matter.
pub fn canonical_form<F>(g: &F) -> F
where
    F: Canonize,
{
    canonical_form_typed(g, 0)
}

/// Return a morphism `phi`
/// such that `g.apply_morphism(phi) = canonical_form_constraint(g, partition)`.
fn canonical_form_morphism_constraint<F>(g: &F, partition: Partition) -> Vec<usize>
where
    F: Canonize,
{
    // initialisation
    let mut tree = Vec::new();
    let mut node = IsoTreeNode::new(partition, g);
    let mut max = None;
    let mut phimax = Vec::new();
    loop {
        if let Some(phi) = node.pi.as_bijection() {
            // If node is a leaf
            let phi_g = Some(g.apply_morphism(phi));
            if phi_g > max {
                max = phi_g;
                phimax = phi.to_vec();
            }
        };
        if let Some(u) = node.children.pop() {
            let new_node = node.explore(u, g);
            tree.push(node);
            node = new_node;
        } else {
            match tree.pop() {
                Some(n) => node = n,
                None => break,
            }
        }
    }
    phimax
}

/// Return a morphism `phi` such that
/// `g.apply_morphism(phi) = canonical_form_typed(g, sigma)`.
pub fn canonical_form_typed_morphism<F>(g: &F, sigma: usize) -> Vec<usize>
where
    F: Canonize,
{
    assert!(sigma <= g.size());
    let mut partition = Partition::simple(g.size());
    for v in 0..sigma {
        partition.individualize(v);
    }
    canonical_form_morphism_constraint(g, partition)
}

/// Return a morphism `phi` such that `g.apply_morphism(phi) = canonical_form(g)`.
pub fn canonical_form_morphism<F>(g: &F) -> Vec<usize>
where
    F: Canonize,
{
    canonical_form_typed_morphism(g, 0)
}

/// Tests
#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Ord, PartialOrd, PartialEq, Eq, Clone, Debug)]
    struct Graph {
        adj: Vec<Vec<usize>>,
    }

    impl Graph {
        fn new(n: usize, edges: &[(usize, usize)]) -> Self {
            let mut adj = vec![Vec::new(); n];
            for &(u, v) in edges {
                adj[u].push(v);
                adj[v].push(u);
            }
            Graph { adj }
        }
    }

    impl Canonize for Graph {
        fn size(&self) -> usize {
            self.adj.len()
        }
        fn apply_morphism(&self, perm: &[usize]) -> Self {
            let mut adj = vec![Vec::new(); self.size()];
            for (i, nbrs) in self.adj.iter().enumerate() {
                adj[perm[i]] = nbrs.iter().map(|&u| perm[u]).collect();
                adj[perm[i]].sort();
            }
            Graph { adj }
        }
        fn invariant_neighborhood(&self, u: usize) -> Vec<Vec<usize>> {
            vec![self.adj[u].clone()]
        }
    }

    #[test]
    fn graph() {
        let c5 = Graph::new(5, &[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]);
        let other_c5 = Graph::new(5, &[(0, 2), (2, 1), (1, 4), (4, 3), (3, 0)]);
        assert_eq!(canonical_form(&c5), canonical_form(&other_c5));

        let p5 = Graph::new(5, &[(0, 1), (1, 2), (2, 3), (3, 4)]);
        assert!(canonical_form(&c5) != canonical_form(&p5));

        let p = canonical_form_morphism(&c5);
        assert_eq!(c5.apply_morphism(&p), canonical_form(&c5));
    }
    #[test]
    fn automorphisms_iterator() {
        let c4 = canonical_form(&Graph::new(4, &[(0, 1), (1, 2), (2, 3), (3, 0)]));
        let mut count = 0;
        for phi in AutomorphismIterator::new(&c4) {
            assert_eq!(c4.apply_morphism(&phi), c4);
            count += 1;
        }
        assert_eq!(count, 8)
    }
}