Struct caniuse_serde::UsagePercentage [] [src]

pub struct UsagePercentage(_);

A simple 'newtype' wrapper that represents a percentage

Methods

impl UsagePercentage
[src]

Zero: Self = UsagePercentage(0.0)

Represents 0%

One: Self = UsagePercentage(1.0)

Represents 1%

OnePerMille: Self = UsagePercentage(0.1)

Represents 0.1%

OneBasisPoint: Self = UsagePercentage(0.01)

Represents 0.01%

Minimum: Self = <UsagePercentage>::Zero

Represents the minimum, 0%; interchangeable with UsagePercentage::Zero

OneHundred: Self = UsagePercentage(100.0)

Represents 100%

Maximum: Self = <UsagePercentage>::OneHundred

Represents the maximum, 100%; interchangeable with UsagePercentage::OneHundred

[src]

Converts from anything that can be represented as a f64 into a percentage. Clamps values below zero (including negative zero and negative infinity) to positive zero. Clamps NaN as positive zero. Clamps values above one hundred (including positive infinity) to one hundred.

[src]

Converts to a scalar, ie a percentage divided by 100

Methods from Deref<Target = f64>

1.0.0
[src]

Returns true if this value is NaN and false otherwise.

use std::f64;

let nan = f64::NAN;
let f = 7.0_f64;

assert!(nan.is_nan());
assert!(!f.is_nan());

1.0.0
[src]

Returns true if this value is positive infinity or negative infinity and false otherwise.

use std::f64;

let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());

1.0.0
[src]

Returns true if this number is neither infinite nor NaN.

use std::f64;

let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());

1.0.0
[src]

Returns true if the number is neither zero, infinite, subnormal, or NaN.

use std::f64;

let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());

1.0.0
[src]

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use std::num::FpCategory;
use std::f64;

let num = 12.4_f64;
let inf = f64::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);

1.0.0
[src]

Returns the largest integer less than or equal to a number.

let f = 3.99_f64;
let g = 3.0_f64;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);

1.0.0
[src]

Returns the smallest integer greater than or equal to a number.

let f = 3.01_f64;
let g = 4.0_f64;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);

1.0.0
[src]

Returns the nearest integer to a number. Round half-way cases away from 0.0.

let f = 3.3_f64;
let g = -3.3_f64;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);

1.0.0
[src]

Returns the integer part of a number.

let f = 3.3_f64;
let g = -3.7_f64;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);

1.0.0
[src]

Returns the fractional part of a number.

let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

1.0.0
[src]

Computes the absolute value of self. Returns NAN if the number is NAN.

use std::f64;

let x = 3.5_f64;
let y = -3.5_f64;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());

1.0.0
[src]

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN
use std::f64;

let f = 3.5_f64;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());

1.0.0
[src]

Returns true if and only if self has a positive sign, including +0.0, NaNs with positive sign bit and positive infinity.

let f = 7.0_f64;
let g = -7.0_f64;

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());

1.0.0
[src]

Deprecated since 1.0.0

: renamed to is_sign_positive

1.0.0
[src]

Returns true if and only if self has a negative sign, including -0.0, NaNs with negative sign bit and negative infinity.

let f = 7.0_f64;
let g = -7.0_f64;

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());

1.0.0
[src]

Deprecated since 1.0.0

: renamed to is_sign_negative

1.0.0
[src]

Fused multiply-add. Computes (self * a) + b with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add.

let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Takes the reciprocal (inverse) of a number, 1/x.

let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0/x)).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Raises a number to an integer power.

Using this function is generally faster than using powf

let x = 2.0_f64;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Raises a number to a floating point power.

let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Takes the square root of a number.

Returns NaN if self is a negative number.

let positive = 4.0_f64;
let negative = -4.0_f64;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());

1.0.0
[src]

Returns e^(self), (the exponential function).

let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Returns 2^(self).

let f = 2.0_f64;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Returns the natural logarithm of the number.

let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Returns the logarithm of the number with respect to an arbitrary base.

let ten = 10.0_f64;
let two = 2.0_f64;

// log10(10) - 1 == 0
let abs_difference_10 = (ten.log(10.0) - 1.0).abs();

// log2(2) - 1 == 0
let abs_difference_2 = (two.log(2.0) - 1.0).abs();

assert!(abs_difference_10 < 1e-10);
assert!(abs_difference_2 < 1e-10);

1.0.0
[src]

Returns the base 2 logarithm of the number.

let two = 2.0_f64;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Returns the base 10 logarithm of the number.

let ten = 10.0_f64;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Converts radians to degrees.

use std::f64::consts;

let angle = consts::PI;

let abs_difference = (angle.to_degrees() - 180.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Converts degrees to radians.

use std::f64::consts;

let angle = 180.0_f64;

let abs_difference = (angle.to_radians() - consts::PI).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Returns the maximum of the two numbers.

let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.max(y), y);

If one of the arguments is NaN, then the other argument is returned.

1.0.0
[src]

Returns the minimum of the two numbers.

let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.min(y), x);

If one of the arguments is NaN, then the other argument is returned.

1.0.0
[src]

Deprecated since 1.10.0

: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
let x = 3.0_f64;
let y = -3.0_f64;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

1.0.0
[src]

Takes the cubic root of a number.

let x = 8.0_f64;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Calculates the length of the hypotenuse of a right-angle triangle given legs of length x and y.

let x = 2.0_f64;
let y = 3.0_f64;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Computes the sine of a number (in radians).

use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Computes the cosine of a number (in radians).

use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Computes the tangent of a number (in radians).

use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);

1.0.0
[src]

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

let f = 1.0_f64;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Computes the four quadrant arctangent of self (y) and other (x).

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
use std::f64;

let pi = f64::consts::PI;
// All angles from horizontal right (+x)
// 45 deg counter-clockwise
let x1 = 3.0_f64;
let y1 = -3.0_f64;

// 135 deg clockwise
let x2 = -3.0_f64;
let y2 = 3.0_f64;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);

1.0.0
[src]

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);

1.0.0
[src]

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

let x = 7.0_f64;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Hyperbolic sine function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);

1.0.0
[src]

Hyperbolic cosine function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);

1.0.0
[src]

Hyperbolic tangent function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);

1.0.0
[src]

Inverse hyperbolic sine function.

let x = 1.0_f64;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

1.0.0
[src]

Inverse hyperbolic cosine function.

let x = 1.0_f64;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

1.0.0
[src]

Inverse hyperbolic tangent function.

use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);

1.20.0
[src]

Raw transmutation to u64.

Converts the f64 into its raw memory representation, similar to the transmute function.

Note that this function is distinct from casting.

Examples

assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);

Trait Implementations

impl Debug for UsagePercentage
[src]

[src]

Formats the value using the given formatter.

impl Copy for UsagePercentage
[src]

impl Clone for UsagePercentage
[src]

[src]

Returns a copy of the value. Read more

1.0.0
[src]

Performs copy-assignment from source. Read more

impl<I: Into<f64>> From<I> for UsagePercentage
[src]

[src]

Converts from anything that can be represented as a f64 into a percentage. Clamps values below zero (including negative zero and negative infinity) to positive zero. Clamps NaN as positive zero. Clamps values above one hundred (including positive infinity) to one hundred.

impl PartialEq for UsagePercentage
[src]

[src]

Partial Equality; total equality is also supported

1.0.0
[src]

This method tests for !=.

impl Eq for UsagePercentage
[src]

impl PartialOrd for UsagePercentage
[src]

[src]

Partial comparison

1.0.0
[src]

This method tests less than (for self and other) and is used by the < operator. Read more

1.0.0
[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

1.0.0
[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

1.0.0
[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl Ord for UsagePercentage
[src]

[src]

Total comparison; always succeeds

1.22.0
[src]

Compares and returns the maximum of two values. Read more

1.22.0
[src]

Compares and returns the minimum of two values. Read more

impl Hash for UsagePercentage
[src]

[src]

Hash

1.3.0
[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl Display for UsagePercentage
[src]

[src]

Displays as a floating point value followed by a '%'

impl Default for UsagePercentage
[src]

[src]

Defaults to zero

impl Add<UsagePercentage> for UsagePercentage
[src]

The resulting type after applying the + operator.

[src]

Add

impl AddAssign<UsagePercentage> for UsagePercentage
[src]

[src]

Add in place

impl Sub<UsagePercentage> for UsagePercentage
[src]

The resulting type after applying the - operator.

[src]

Subtract

impl SubAssign<UsagePercentage> for UsagePercentage
[src]

[src]

Subtract in place

impl Deref for UsagePercentage
[src]

The resulting type after dereferencing.

[src]

Dereferences to f64