1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use nalgebra::{
    allocator::Allocator,
    base::storage::{Owned, Storage},
    convert,
    geometry::{Point3, Rotation3, UnitQuaternion},
    DefaultAllocator, Dim, Matrix, Matrix3, MatrixMN, RealField, Vector3, U1, U2, U3, U4,
};

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};

use crate::{
    coordinate_system::WorldFrame,
    intrinsics_perspective::{IntrinsicParametersPerspective, PerspectiveParams},
    Bundle, Error, ExtrinsicParameters, IntrinsicParameters, Pixels, Points, RayBundle,
};

/// A camera model that can convert world coordinates into pixel coordinates.
///
/// # Examples
///
/// Creates a new perspective camera:
///
/// ```
/// use cam_geom::*;
/// use nalgebra::*;
///
/// // perepective parameters - focal length of 100, no skew, pixel center at (640,480)
/// let intrinsics = IntrinsicParametersPerspective::from(PerspectiveParams {
///     fx: 100.0,
///     fy: 100.0,
///     skew: 0.0,
///     cx: 640.0,
///     cy: 480.0,
/// });
///
/// // Set extrinsic parameters - camera at (10,0,10), looing at (0,0,0), up (0,0,1)
/// let camcenter = Vector3::new(10.0, 0.0, 10.0);
/// let lookat = Vector3::new(0.0, 0.0, 0.0);
/// let up = Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0));
/// let pose = ExtrinsicParameters::from_view(&camcenter, &lookat, &up);
///
/// // Create camera with both intrinsic and extrinsic parameters.
/// let cam = Camera::new(intrinsics, pose);
/// ```
///
/// Creates a new orthographic camera:
///
/// ```
/// use cam_geom::*;
/// use nalgebra::*;
///
/// // orthographic parameters - scale of 100, pixel center at (640,480)
/// let intrinsics = IntrinsicParametersOrthographic::from(OrthographicParams {
///     sx: 100.0,
///     sy: 100.0,
///     cx: 640.0,
///     cy: 480.0,
/// });
///
/// // Set extrinsic parameters - camera at (10,0,10), looing at (0,0,0), up (0,0,1)
/// let camcenter = Vector3::new(10.0, 0.0, 10.0);
/// let lookat = Vector3::new(0.0, 0.0, 0.0);
/// let up = Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0));
/// let pose = ExtrinsicParameters::from_view(&camcenter, &lookat, &up);
///
/// // Create camera with both intrinsic and extrinsic parameters.
/// let cam = Camera::new(intrinsics, pose);
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Camera<R, I>
where
    I: IntrinsicParameters<R>,
    R: RealField,
{
    intrinsics: I,
    extrinsics: ExtrinsicParameters<R>,
}

impl<R, I> Camera<R, I>
where
    I: IntrinsicParameters<R>,
    R: RealField,
{
    /// Create a new camera from intrinsic and extrinsic parameters.
    ///
    /// # Arguments
    /// Intrinsic parameters and extrinsic parameters
    #[inline]
    pub fn new(intrinsics: I, extrinsics: ExtrinsicParameters<R>) -> Self {
        Self {
            intrinsics,
            extrinsics,
        }
    }

    /// Return a reference to the extrinsic parameters.
    #[inline]
    pub fn extrinsics(&self) -> &ExtrinsicParameters<R> {
        &self.extrinsics
    }

    /// Return a reference to the intrinsic parameters.
    #[inline]
    pub fn intrinsics(&self) -> &I {
        &self.intrinsics
    }

    /// take 3D coordinates in world frame and convert to pixel coordinates
    pub fn world_to_pixel<NPTS, InStorage>(
        &self,
        world: &Points<WorldFrame, R, NPTS, InStorage>,
    ) -> Pixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        NPTS: Dim,
        InStorage: Storage<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U2>,
    {
        let camera_frame = self.extrinsics.world_to_camera(&world);
        self.intrinsics.camera_to_pixel(&camera_frame)
    }

    /// take pixel coordinates and project to 3D in world frame
    ///
    /// output arguments:
    /// `camera` - camera frame coordinate rays
    /// `world` - world frame coordinate rays
    ///
    /// Note that the camera frame coordinates are returned as they must
    /// be computed anyway, so this additional data is "free".
    pub fn pixel_to_world<IN, NPTS>(
        &self,
        pixels: &Pixels<R, NPTS, IN>,
    ) -> RayBundle<WorldFrame, I::BundleType, R, NPTS, Owned<R, NPTS, U3>>
    where
        I::BundleType: Bundle<R>,
        IN: Storage<R, NPTS, U2>,
        NPTS: Dim,
        I::BundleType: Bundle<R>,
        DefaultAllocator: Allocator<R, U1, U2>,
        DefaultAllocator: Allocator<R, NPTS, U2>,
        DefaultAllocator: Allocator<R, NPTS, U3>,
    {
        // get camera frame rays
        let camera = self.intrinsics.pixel_to_camera(&pixels);

        // get world frame rays
        self.extrinsics.ray_camera_to_world(&camera)
    }
}

impl<R: RealField> Camera<R, IntrinsicParametersPerspective<R>> {
    /// Create a `Camera` from a 3x4 perspective projection matrix.
    pub fn from_perspective_matrix<S>(pmat: &Matrix<R, U3, U4, S>) -> Result<Self, Error>
    where
        S: Storage<R, U3, U4> + Clone,
    {
        let m = pmat.clone().remove_column(3);
        let (rquat, k) = rq_decomposition(m)?;

        let k22: R = k[(2, 2)];

        let one: R = convert(1.0);

        let k = k * (one / k22); // normalize

        let params = PerspectiveParams {
            fx: k[(0, 0)],
            fy: k[(1, 1)],
            skew: k[(0, 1)],
            cx: k[(0, 2)],
            cy: k[(1, 2)],
        };

        let camcenter = pmat2cam_center(pmat);
        let extrinsics = ExtrinsicParameters::from_rotation_and_camcenter(rquat, camcenter);

        Ok(Self::new(params.into(), extrinsics))
    }

    /// Create a 3x4 perspective projection matrix modeling this camera.
    pub fn as_camera_matrix(&self) -> MatrixMN<R, U3, U4> {
        let m = {
            let p33 = self.intrinsics().as_intrinsics_matrix();
            p33 * self.extrinsics().cache.qt
        };

        // flip sign if focal length < 0
        let m = if m[(0, 0)] < nalgebra::convert(0.0) {
            -m
        } else {
            m
        };

        let m = m / m[(2, 3)]; // normalize
        m
    }
}

#[cfg(test)]
pub fn roundtrip_camera<R, I>(
    cam: Camera<R, I>,
    width: usize,
    height: usize,
    step: usize,
    border: usize,
    eps: R,
) where
    R: RealField,
    I: IntrinsicParameters<R>,
    I::BundleType: Bundle<R>,
{
    let pixels = crate::intrinsic_test_utils::generate_uv_raw(width, height, step, border);

    let world_coords = cam.pixel_to_world(&pixels);
    let world_coords_points = world_coords.point_on_ray();

    // project back to pixel coordinates
    let pixel_actual = cam.world_to_pixel(&world_coords_points);
    approx::assert_abs_diff_eq!(pixels.data, pixel_actual.data, epsilon = convert(eps));
}

#[allow(non_snake_case)]
fn rq<R: RealField>(A: Matrix3<R>) -> (Matrix3<R>, Matrix3<R>) {
    let zero: R = convert(0.0);
    let one: R = convert(1.0);

    // see https://math.stackexchange.com/a/1640762
    let P = Matrix3::<R>::new(
        zero, zero, one, // row 1
        zero, one, zero, // row 2
        one, zero, zero, // row 3
    );
    let Atilde = P * A;

    let (Qtilde, Rtilde) = {
        let qrm = nalgebra::linalg::QR::new(Atilde.transpose());
        (qrm.q(), qrm.r())
    };
    let Q = P * Qtilde.transpose();
    let R = P * Rtilde.transpose() * P;
    (R, Q)
}

/// perform RQ decomposition and return results as right-handed quaternion and intrinsics matrix
fn rq_decomposition<R: RealField>(
    orig: Matrix3<R>,
) -> Result<(UnitQuaternion<R>, Matrix3<R>), Error> {
    let (mut intrin, mut q) = rq(orig);
    let zero: R = convert(0.0);
    for i in 0..3 {
        if intrin[(i, i)] < zero {
            for j in 0..3 {
                intrin[(j, i)] = -intrin[(j, i)];
                q[(i, j)] = -q[(i, j)];
            }
        }
    }

    match right_handed_rotation_quat_new(&q) {
        Ok(rquat) => Ok((rquat, intrin)),
        Err(error) => {
            match error {
                Error::InvalidRotationMatrix => {
                    // convert left-handed rotation to right-handed rotation
                    let q = -q;
                    let intrin = -intrin;
                    let rquat = right_handed_rotation_quat_new(&q)?;
                    Ok((rquat, intrin))
                }
                e => Err(e),
            }
        }
    }
}

/// convert a 3x3 matrix into a valid right-handed rotation
fn right_handed_rotation_quat_new<R: RealField>(
    orig: &Matrix3<R>,
) -> Result<UnitQuaternion<R>, Error> {
    let r1 = *orig;
    let rotmat = Rotation3::from_matrix_unchecked(r1);
    let rquat = UnitQuaternion::from_rotation_matrix(&rotmat);
    if !is_right_handed_rotation_quat(&rquat) {
        return Err(Error::InvalidRotationMatrix);
    }
    Ok(rquat)
}

/// Check for valid right-handed rotation.
///
/// Converts quaternion to rotation matrix and back again to quat then comparing
/// quats. Probably there is a much faster and better way.
pub(crate) fn is_right_handed_rotation_quat<R: RealField>(rquat: &UnitQuaternion<R>) -> bool {
    let rotmat2 = rquat.to_rotation_matrix();
    let rquat2 = UnitQuaternion::from_rotation_matrix(&rotmat2);
    let delta = rquat.rotation_to(&rquat2);
    let angle = my_quat_angle(&delta);
    let epsilon = R::default_epsilon() * convert(1e5);
    angle.abs() <= epsilon
}

/// get the camera center from a 3x4 camera projection matrix
fn pmat2cam_center<R, S>(p: &Matrix<R, U3, U4, S>) -> Point3<R>
where
    R: RealField + Clone,
    S: Storage<R, U3, U4> + Clone,
{
    let x = p.clone().remove_column(0).determinant();
    let y = -p.clone().remove_column(1).determinant();
    let z = p.clone().remove_column(2).determinant();
    let w = -p.clone().remove_column(3).determinant();
    Point3::from(Vector3::new(x / w, y / w, z / w))
}

// Calculate angle of quaternion
///
/// This is the implementation from prior to
/// https://github.com/rustsim/nalgebra/commit/74aefd9c23dadd12ee654c7d0206b0a96d22040c
fn my_quat_angle<R: RealField>(quat: &nalgebra::UnitQuaternion<R>) -> R {
    let w = quat.quaternion().scalar().abs();

    // Handle inaccuracies that make break `.acos`.
    if w >= R::one() {
        R::zero()
    } else {
        w.acos() * convert(2.0f64)
    }
}

#[cfg(test)]
mod tests {
    #[test]
    #[cfg(feature = "serde-serialize")]
    fn test_serde() {
        use nalgebra::{Unit, Vector3};

        use super::PerspectiveParams;
        use crate::{Camera, ExtrinsicParameters, IntrinsicParametersPerspective};

        let params = PerspectiveParams {
            fx: 100.0,
            fy: 102.0,
            skew: 0.1,
            cx: 321.0,
            cy: 239.9,
        };

        let intrinsics: IntrinsicParametersPerspective<_> = params.into();

        let camcenter = Vector3::new(10.0, 0.0, 10.0);
        let lookat = Vector3::new(0.0, 0.0, 0.0);
        let up = Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0));
        let pose = ExtrinsicParameters::from_view(&camcenter, &lookat, &up);

        let expected = Camera::new(intrinsics, pose);

        let buf = serde_json::to_string(&expected).unwrap();
        let actual: Camera<_, _> = serde_json::from_str(&buf).unwrap();
        assert!(expected == actual);
    }
}