1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//! The AST module contains structs and enums for the abstract syntax tree.

use crate::env::Environment;
use crate::error::LispError;
use crate::eval;
use dyn_clone::DynClone;

use std::fmt::{Debug, Display};

/// Stores an expression.
#[derive(Debug, Clone)]
pub enum Ast {
    /// An atom, such as a number, string, or symbol.
    Atom(LispAtom),

    /// A list created using ().
    List(Vec<Ast>),

    /// A callable function.
    Function(Box<dyn LispCallable>),

    /// Basically a none type.
    Unspecified,
}

impl PartialEq for Ast {
    fn eq(&self, other: &Self) -> bool {
        match self {
            Ast::Atom(val) => match other {
                Ast::Atom(other) => val == other,
                _ => false,
            },
            Ast::List(items) => match other {
                Ast::List(other) => items == other,
                _ => false,
            },
            // TODO: Maybe two functions are equal if they have the same body?
            Ast::Function(_) => false,
            Ast::Unspecified => false,
        }
    }
}

impl Display for Ast {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Atom(atom) => write!(f, "{}", atom),
            Self::List(list) => {
                write!(f, "(")?;

                // Display a space-separated list of inner items
                let mut list = list.iter();
                if let Some(ast) = list.next() {
                    write!(f, "{}", ast)?;

                    for ast in list {
                        write!(f, " {}", ast)?;
                    }
                }

                write!(f, ")")
            }
            Self::Function(_) => write!(f, "<function>"),
            Self::Unspecified => Ok(()), // unspecified doesn't display anything
        }
    }
}

/// Lisp atom.
#[derive(Clone, Debug, PartialEq)]
pub enum LispAtom {
    /// A lisp symbol.
    Symbol(String),

    /// A lisp string. Stored as a Rust string which means it can store any unicode character.
    String(String),

    /// A lisp boolean.
    Bool(bool),

    /// A lisp number. Currently this is a double precision float.
    Number(f64),
}

impl Display for LispAtom {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Symbol(symbol) => write!(f, "{}", symbol),
            Self::String(s) => write!(f, "\"{}\"", s),
            Self::Number(num) => write!(f, "{}", num),
            Self::Bool(b) => write!(f, "{}", b),
        }
    }
}

impl Clone for Box<dyn LispCallable> {
    fn clone(&self) -> Self {
        dyn_clone::clone_box(&**self)
    }
}

/// A struct representing the possible values of arity a function can have. Arity is just the
/// number of arguments a function takes.
#[derive(Debug, Clone)]
pub enum FunctionArity {
    /// The function can be called with a number of arguments greater than or equal to the
    /// contained value.
    AtLeast(usize),

    /// The function can be called with only the specified amount of arguments.
    Exactly(usize),

    /// The function can be called with any of the amounts of arguments stored in the vector.
    Multi(Vec<usize>),
}

impl FunctionArity {
    /// Check is the number of arguments passed to a function matches that functions arity.
    pub fn check_arity(&self, num_args: usize) -> Result<(), LispError> {
        match self {
            Self::AtLeast(num_params) => {
                if num_args >= *num_params {
                    Ok(())
                } else {
                    Err(LispError::Type)
                }
            }
            Self::Exactly(num_params) => {
                if num_args == *num_params {
                    Ok(())
                } else {
                    Err(LispError::Type)
                }
            }
            Self::Multi(options) => {
                if options.contains(&num_args) {
                    Ok(())
                } else {
                    Err(LispError::Type)
                }
            }
        }
    }
}

/// Trait used to define Lisp functions.
pub trait LispCallable: Debug + DynClone {
    /// Return the arity of the function.
    fn arity(&self) -> &FunctionArity;

    /// Call the function and return the result.
    fn call(&self, args: Vec<Ast>, env: &mut Environment) -> Result<Ast, LispError>;
}

/// Function created using `lambda`.
#[derive(Debug, Clone)]
pub struct LispLambda {
    arity: FunctionArity,
    bindings: Vec<String>,
    body: Ast,
}

impl LispLambda {
    /// Create a new lambda function with specified arity, bindings, and body.
    pub fn new(arity: FunctionArity, bindings: Vec<String>, body: Ast) -> Self {
        Self {
            arity,
            bindings,
            body,
        }
    }
}

impl LispCallable for LispLambda {
    fn arity(&self) -> &FunctionArity {
        &self.arity
    }

    fn call(&self, args: Vec<Ast>, env: &mut Environment) -> Result<Ast, LispError> {
        // Create bindings
        env.new_scope(self.bindings.iter().cloned().zip(args).collect());

        // Evaluate in new environment
        let res = eval::eval_expr(self.body.clone(), env);

        env.pop_scope();

        res
    }
}