1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
crate::ix!();
#[inline] pub fn slice_impl<SIndex, Context>(
output: *mut Tensor,
data: &Tensor,
starts: &Tensor,
ends: &Tensor,
context: *mut Context,
gdata: Option<&mut Tensor>,
go: Option<&Tensor>) -> bool {
todo!();
/*
bool backward = output == nullptr;
auto* starts_data = starts.template data<SIndex>();
auto* ends_data = ends.template data<SIndex>();
CAFFE_ENFORCE_EQ(starts.dim(), 1);
CAFFE_ENFORCE_EQ(ends.dim(), 1);
CAFFE_ENFORCE_GE(data.dim(), starts.numel());
CAFFE_ENFORCE_EQ(starts.numel(), ends.numel());
std::vector<SIndex> starts_idx(data.dim());
std::vector<SIndex> ends_idx(data.dim());
std::vector<SIndex> dst_sizes(data.dim());
for (int i = 0; i < data.dim(); ++i) {
if (i >= starts.numel()) {
starts_idx[i] = 0;
ends_idx[i] = data.size(i);
dst_sizes[i] = data.size(i);
continue;
}
if (data.size(i) > 0) {
auto start = starts_data[i];
auto end = ends_data[i];
if (start < 0) {
start = data.size(i) + 1 + start;
}
if (end < 0) {
end = data.size(i) + 1 + end;
}
if (start > data.size(i)) {
start = data.size(i);
}
if (end > data.size(i)) {
end = data.size(i);
}
CAFFE_ENFORCE_GE(start, 0);
CAFFE_ENFORCE_GE(end, 0);
CAFFE_ENFORCE_GE(end, start);
starts_idx[i] = start;
ends_idx[i] = end;
dst_sizes[i] = end - start;
} else {
starts_idx[i] = 0;
ends_idx[i] = 0;
dst_sizes[i] = 0;
}
}
if (data.numel() <= 0) {
// When the input is empty, we do not need to do copy.
if (!backward) {
output->Resize(dst_sizes);
output->raw_mutable_data(data.dtype());
} else {
gdata->ResizeLike(data);
gdata->raw_mutable_data(go->dtype());
}
return true;
}
// for now only supports slicing in 1 dimension
int dim = -1;
for (int i = 0; i < data.dim(); ++i) {
if (starts_idx[i] > 0 || ends_idx[i] < data.size(i)) {
CAFFE_ENFORCE_EQ(
dim, -1, "Currently only possible to slice in 1 dimension.");
dim = i;
}
}
if (dim == -1) {
if (!backward) {
output->CopyFrom(data, true /*async*/);
} else {
gdata->CopyFrom(*go, true /*async*/);
}
return true;
}
size_t unit = std::accumulate(
data.sizes().begin() + dim + 1,
data.sizes().end(),
1,
std::multiplies<SIndex>());
size_t num_blocks = std::accumulate(
data.sizes().begin(),
data.sizes().begin() + dim,
1,
std::multiplies<SIndex>());
if (!backward) {
output->Resize(dst_sizes);
} else {
gdata->ResizeLike(data);
}
size_t itemsize = data.dtype().itemsize();
if (!backward) {
char* src_bytes = (char*)data.raw_data();
char* dst_bytes = (char*)output->raw_mutable_data(data.dtype());
size_t src_nbytes = data.nbytes();
size_t dst_nbytes = output->nbytes();
size_t src_block_size = unit * data.size(dim);
size_t dst_block_size = unit * (ends_idx[dim] - starts_idx[dim]);
size_t src_offset = unit * starts_idx[dim];
if (num_blocks == 0 || dst_block_size == 0) {
return true;
}
size_t src_block_size_bytes = itemsize * src_block_size;
size_t dst_block_size_bytes = itemsize * dst_block_size;
char* src_offset_bytes = src_bytes + itemsize * src_offset;
char* dst_offset_bytes = dst_bytes;
for (size_t i = 0; i < num_blocks; ++i) {
char* local_src_offset_bytes =
src_offset_bytes + i * src_block_size_bytes;
char* local_dst_offset_bytes =
dst_offset_bytes + i * dst_block_size_bytes;
DCHECK_LE(
static_cast<void*>(local_src_offset_bytes + dst_block_size_bytes),
static_cast<void*>(src_bytes + src_nbytes));
DCHECK_LE(
static_cast<void*>(local_dst_offset_bytes + dst_block_size_bytes),
static_cast<void*>(dst_bytes + dst_nbytes));
context->CopyItemsSameDevice(
data.dtype(),
dst_block_size,
(void*)local_src_offset_bytes,
(void*)local_dst_offset_bytes);
}
} else {
char* src_bytes = (char*)go->raw_data();
char* dst_bytes = (char*)gdata->raw_mutable_data(go->dtype());
size_t src_nbytes = go->nbytes();
size_t dst_nbytes = gdata->nbytes();
size_t src_block_size = unit * (ends_idx[dim] - starts_idx[dim]);
size_t dst_block_size = unit * data.size(dim);
size_t dst_offset = unit * starts_idx[dim];
if (num_blocks == 0 || dst_block_size == 0) {
return true;
}
size_t src_block_size_bytes = itemsize * src_block_size;
size_t dst_block_size_bytes = itemsize * dst_block_size;
char* src_offset_bytes = src_bytes;
char* dst_offset_bytes = dst_bytes + itemsize * dst_offset;
// Zero out gradient blob before copy since we copy in fewer items than
// there is space for
math::Set<char, Context>(dst_nbytes, 0, dst_bytes, context);
// If output tensor is empty, just return zeroed gradient tensor
if (!src_bytes) {
return true;
}
for (size_t i = 0; i < num_blocks; ++i) {
char* local_src_offset_bytes =
src_offset_bytes + i * src_block_size_bytes;
char* local_dst_offset_bytes =
dst_offset_bytes + i * dst_block_size_bytes;
DCHECK_LE(
local_src_offset_bytes + src_block_size_bytes,
src_bytes + src_nbytes);
DCHECK_LE(
local_dst_offset_bytes + src_block_size_bytes,
dst_bytes + dst_nbytes);
context->CopyItemsSameDevice(
go->dtype(),
src_block_size,
(void*)local_src_offset_bytes,
(void*)local_dst_offset_bytes);
}
}
return true;
*/
}