1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// Copyright (c) 2017 King's College London
// created by the Software Development Team <http://soft-dev.org/>
//
// The Universal Permissive License (UPL), Version 1.0
//
// Subject to the condition set forth below, permission is hereby granted to any person obtaining a
// copy of this software, associated documentation and/or data (collectively the "Software"), free
// of charge and under any and all copyright rights in the Software, and any and all patent rights
// owned or freely licensable by each licensor hereunder covering either (i) the unmodified
// Software as contributed to or provided by such licensor, or (ii) the Larger Works (as defined
// below), to deal in both
//
// (a) the Software, and
// (b) any piece of software and/or hardware listed in the lrgrwrks.txt file
// if one is included with the Software (each a "Larger Work" to which the Software is contributed
// by such licensors),
//
// without restriction, including without limitation the rights to copy, create derivative works
// of, display, perform, and distribute the Software and make, use, sell, offer for sale, import,
// export, have made, and have sold the Software and the Larger Work(s), and to sublicense the
// foregoing rights on either these or other terms.
//
// This license is subject to the following condition: The above copyright notice and either this
// complete permission notice or at a minimum a reference to the UPL must be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

//! An immutable cactus stuck (also called a spaghetti stack or parent pointer tree). A cactus
//! stack is a (possibly empty) node with a (possibly null) pointer to a parent node. Any given
//! node has a unique path back to the root node. Rather than mutably updating the stack, one
//! creates and obtains access to immutable nodes (when a node becomes unreachable its memory is
//! automatically reclaimed). A new child node pointing to a parent can be created via the `child`
//! function (analogous to the normal `push`) and a parent can be retrieved via the `parent`
//! function (analogous to the normal `pop`).
//!
//! ```
//! use cactus::Cactus;
//! let c = Cactus::new();
//! assert!(c.is_empty());
//! let c2 = c.child(1);
//! assert_eq!(c2.len(), 1);
//! assert_eq!(*c2.val().unwrap(), 1);
//! let c3 = c2.parent().unwrap();
//! assert!(c3.is_empty());
//! ```
//!
//! From a given node one can create multiple sub-stacks:
//!
//! ```
//! use cactus::Cactus;
//! let c = Cactus::new().child(1);
//! let c2 = c.child(2);
//! let c3 = c.child(3);
//! assert!(c2 != c3);
//! assert_eq!(c2.vals().cloned().collect::<Vec<_>>(), [2, 1]);
//! assert_eq!(c3.vals().cloned().collect::<Vec<_>>(), [3, 1]);
//! ```

use std::fmt;
use std::hash::{Hash, Hasher};
use std::rc::Rc;

/// An immutable cactus stack node. May be empty or contain a value; may have a pointer to a parent
/// or not.
#[derive(Clone, Default)]
pub struct Cactus<T> {
    node: Option<Rc<Node<T>>>
}

#[derive(Clone)]
struct Node<T> {
    val: T,
    parent: Option<Rc<Node<T>>>,
    len: usize
}

impl<T> Cactus<T> {
    /// Return an empty cactus stack node.
    pub fn new() -> Cactus<T> {
        Cactus{node: None}
    }

    /// Is this cactus stack node empty?
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new();
    /// assert!(c.is_empty());
    /// let c2 = c.child(1);
    /// assert!(!c2.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.node.is_none()
    }

    /// How many items are there in this cactus stack?
    pub fn len(&self) -> usize {
        self.node.as_ref().map_or(0, |x| x.len)
    }

    /// Create a new cactus stack node containing value `val` and pointing to parent `self`.
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new();
    /// let c2 = c.child(1);
    /// let c3 = c2.child(2);
    /// assert_eq!(c3.vals().cloned().collect::<Vec<_>>(), [2, 1]);
    /// ```
    pub fn child(&self, val: T) -> Cactus<T> {
        Cactus {
            node: Some(Rc::new(Node{val,
                                    parent: self.node.clone(),
                                    len: self.node.as_ref().map_or(1, |x| x.len + 1)
                                   }))
        }
    }

    /// Return this cactus stack node's parent node or `None` if this cactus stack is empty.
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new();
    /// let c2 = c.child(1);
    /// assert_eq!(c.parent(), None);
    /// assert_eq!(c2.val(), Some(&1));
    /// assert_eq!(c2.parent().unwrap(), Cactus::new());
    /// ```
    pub fn parent(&self) -> Option<Cactus<T>> {
        self.node.as_ref()
                 .map(|n| Cactus{node: n.parent.clone()} )
    }

    /// Return a reference to this cactus stack node's value or `None` if this cactus stack is
    /// empty.
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new().child(1);
    /// assert_eq!(c.val(), Some(&1));
    /// assert_eq!(c.parent().unwrap().val(), None);
    /// ```
    pub fn val(&self) -> Option<&T> {
        self.node.as_ref().map(|n| &n.val)
    }

    /// Return an iterator over this cactus stack's nodes. Note that the iterator produces nodes
    /// starting from this node and then walking up towards the root.
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new().child(1).child(2).child(3);
    /// assert_eq!(c.nodes().skip(1).next(), Some(Cactus::new().child(1).child(2)));
    /// ```
    pub fn nodes(&self) -> CactusNodesIter<T> {
        CactusNodesIter{next: self.node.as_ref()}
    }

    /// Return an iterator over this cactus stack's values. Note that the iterator produces values
    /// starting from this node and then walking up towards the root.
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new().child(1).child(2).child(3);
    /// assert_eq!(c.vals().cloned().collect::<Vec<_>>(), [3, 2, 1]);
    /// ```
    pub fn vals(&self) -> CactusValsIter<T> {
        CactusValsIter{next: self.node.as_ref()}
    }

    /// Try to consume this Cactus node and return its data. If the cactus node has no children,
    /// this succeeds; if the cactus node has children, it fails, and returns the original
    /// cactus node.
    ///
    /// # Examples
    /// ```
    /// use cactus::Cactus;
    /// let c = Cactus::new().child(1).child(2);
    /// let p = c.parent().unwrap();
    /// assert_eq!(c.try_unwrap().unwrap(), 2);
    /// // At this point the c variable can no longer be referenced (its value has moved).
    /// assert_eq!(p.val(), Some(&1));
    ///
    /// let d = Cactus::new().child(1);
    /// let d1 = d.child(2);
    /// let d2 = d.child(3);
    /// // At this point d.try_unwrap().unwrap() would return an Err, as d has two children that
    /// // prevent the underlying Cactus from being consumed. We then need to manually clone the
    /// // value if we want to access it uniformly.
    /// assert_eq!(d.try_unwrap().unwrap_or_else(|c| c.val().unwrap().clone()), 1);
    /// // At this point the d variable can no loner be referenced (its value has moved),
    /// // but we can still access the contents it once pointed to:
    /// assert_eq!(*d1.parent().unwrap().val().unwrap(), 1);
    /// ```
    pub fn try_unwrap(self) -> Result<T, Cactus<T>> {
        match self.node {
            None => Err(Cactus{node: None}),
            Some(x) =>  {
                match Rc::try_unwrap(x) {
                    Ok(n) => Ok(n.val),
                    Err(rc) => Err(Cactus{node: Some(rc)})
                }
            }
        }
    }
}

/// An iterator over a `Cactus` stack's nodes. Note that the iterator produces nodes starting
/// from this node and then walking up towards the root.
pub struct CactusNodesIter<'a, T> where T: 'a {
    next: Option<&'a Rc<Node<T>>>
}

impl<'a, T> Iterator for CactusNodesIter<'a, T> {
    type Item = Cactus<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.next.take().map(|n| {
            self.next = n.parent.as_ref();
            Cactus{node: Some(n.clone())}
        })
    }
}

/// An iterator over a `Cactus` stack's values. Note that the iterator produces values starting
/// from this node and then walking up towards the root.
pub struct CactusValsIter<'a, T> where T: 'a {
    next: Option<&'a Rc<Node<T>>>
}

impl<'a, T> Iterator for CactusValsIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        self.next.take().map(|n| {
            self.next = n.parent.as_ref();
            &n.val
        })
    }
}

impl<T: PartialEq> PartialEq for Cactus<T> {
    fn eq(&self, other: &Cactus<T>) -> bool {
        if self.len() != other.len() {
            return false;
        }
        self.vals()
            .zip(other.vals())
            .all(|(x, y)| x == y)
    }
}

impl<T: Eq> Eq for Cactus<T> {}

impl<T: Hash> Hash for Cactus<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        for v in self.vals() {
            v.hash(state);
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Cactus<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "Cactus["));
        for (i, x) in self.vals().enumerate() {
            if i > 0 {
                try!(write!(f, ", "));
            }
            try!(write!(f, "{:?}", x));
        }
        write!(f, "]")
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashSet;
    use std::collections::hash_map::DefaultHasher;
    use super::*;

    #[test]
    fn test_simple() {
        let r = Cactus::new();
        assert!(r.is_empty());
        assert_eq!(r.len(), 0);
        assert!(r.val().is_none());
        assert!(r.parent().is_none());
        let r2 = r.child(2);
        assert!(!r2.is_empty());
        assert_eq!(r2.len(), 1);
        assert_eq!(*r2.val().unwrap(), 2);
        let r3 = r2.parent().unwrap();
        assert_eq!(r3.is_empty(), true);
        assert_eq!(r3.len(), 0);
        let r4 = r.child(3);
        assert_eq!(r4.len(), 1);
        assert_eq!(*r4.val().unwrap(), 3);
        let r5 = r4.parent().unwrap();
        assert!(r5.is_empty());
        let r6 = r4.child(4);
        assert_eq!(r6.len(), 2);
        assert_eq!(*r6.val().unwrap(), 4);
        assert_eq!(*r6.parent().unwrap().val().unwrap(), 3);
    }

    #[test]
    fn test_vals() {
        let c = Cactus::new().child(3).child(2).child(1);
        assert_eq!(c.vals().cloned().collect::<Vec<_>>(), [1, 2, 3]);
    }

    #[test]
    fn test_vals_nodes() {
        let c = Cactus::new().child(3).child(2).child(1);
        assert_eq!(c.nodes().skip(1).next().unwrap(), Cactus::new().child(3).child(2));
        assert_eq!(c.nodes().skip(2).next().unwrap(), Cactus::new().child(3));
    }

    #[test]
    fn test_eq() {
        let c1 = Cactus::new().child(1).child(2);
        let c2 = Cactus::new().child(1).child(2);
        assert_eq!(c1, c2);
        assert!(!(c1 != c2));
        let c3 = Cactus::new().child(2).child(2);
        assert_ne!(c1, c3);
        assert!(!(c1 == c3));
    }

    #[test]
    fn test_debug() {
        let c = Cactus::new().child(3).child(2).child(1);
        assert_eq!(format!("{:?}", c), "Cactus[1, 2, 3]");
    }

    #[test]
    fn test_try_unwrap() {
        let c = Cactus::new().child(4).child(3);
        let c1 = c.child(2);
        let c2 = c.child(1);
        assert_eq!(c2.try_unwrap(), Ok(1));
        assert_eq!(c.try_unwrap().unwrap_or_else(|c| c.val().unwrap().clone()), 3);
        assert_eq!(c1.try_unwrap(), Ok(2));
    }

    #[test]
    fn test_hash() {
        fn calculate_hash<T: Hash>(t: &T) -> u64 {
            let mut s = DefaultHasher::new();
            t.hash(&mut s);
            s.finish()
        }

        let c1 = Cactus::new().child(4).child(3);
        let c2 = Cactus::new().child(4).child(3);
        assert_eq!(calculate_hash(&c1), calculate_hash(&c2));
        // The next test is fragile in theory although probably not in practise. Since there's no
        // guarantee that two distinct things will map to distinct hashes, it's perfectly possible
        // that a hasher returns the same value for two distinct cactuses. But this isn't hugely
        // likely to happen and, if it does, it'll be easy to work out what happened.
        let c3 = Cactus::new().child(3).child(4);
        assert_ne!(calculate_hash(&c1), calculate_hash(&c3));

        let mut s = HashSet::new();
        s.insert(c1.clone());
        s.insert(c2.clone());
        assert_eq!(s.len(), 1);
        assert_eq!(*s.iter().nth(0).unwrap(), c1);
        assert_eq!(*s.iter().nth(0).unwrap(), c2);
    }
}