1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*!
Declarative macros for defining functions that wrap a static-ref cache object.

### `cached!` and `cached_key!` Usage & Options:

There are several options depending on how explicit you want to be. See below for a full syntax breakdown.


1.) Using the shorthand will use an unbounded cache.


```rust,no_run
#[macro_use] extern crate cached;

/// Defines a function named `fib` that uses a cache named `FIB`
cached!{
    FIB;
    fn fib(n: u64) -> u64 = {
        if n == 0 || n == 1 { return n }
        fib(n-1) + fib(n-2)
    }
}
# pub fn main() { }
```


2.) Using the full syntax requires specifying the full cache type and providing
    an instance of the cache to use. Note that the cache's key-type is a tuple
    of the function argument types. If you would like fine grained control over
    the key, you can use the `cached_key!` macro.
    The following example uses a `SizedCache` (LRU):

```rust,no_run
#[macro_use] extern crate cached;

use std::thread::sleep;
use std::time::Duration;
use cached::SizedCache;

/// Defines a function `compute` that uses an LRU cache named `COMPUTE` which has a
/// size limit of 50 items. The `cached!` macro will implicitly combine
/// the function arguments into a tuple to be used as the cache key.
cached!{
    COMPUTE: SizedCache<(u64, u64), u64> = SizedCache::with_size(50);
    fn compute(a: u64, b: u64) -> u64 = {
        sleep(Duration::new(2, 0));
        return a * b;
    }
}
# pub fn main() { }
```


3.) The `cached_key` macro functions identically, but allows you to define the
    cache key as an expression.

```rust,no_run
#[macro_use] extern crate cached;

use std::thread::sleep;
use std::time::Duration;
use cached::SizedCache;

/// Defines a function named `length` that uses an LRU cache named `LENGTH`.
/// The `Key = ` expression is used to explicitly define the value that
/// should be used as the cache key. Here the borrowed arguments are converted
/// to an owned string that can be stored in the global function cache.
cached_key!{
    LENGTH: SizedCache<String, usize> = SizedCache::with_size(50);
    Key = { format!("{}{}", a, b) };
    fn length(a: &str, b: &str) -> usize = {
        let size = a.len() + b.len();
        sleep(Duration::new(size as u64, 0));
        size
    }
}
# pub fn main() { }
```

4.) The `cached_result` and `cached_key_result` macros function similarly to `cached`
    and `cached_key` respectively but the cached function needs to return `Result`
    (or some type alias like `io::Result`). If the function returns `Ok(val)` then `val`
    is cached, but errors are not. Note that only the success type needs to implement
    `Clone`, _not_ the error type. When using `cached_result` and `cached_key_result`,
    the cache type cannot be derived and must always be explicitly specified.

```rust,no_run
#[macro_use] extern crate cached;

use cached::UnboundCache;

/// Cache the successes of a function.
/// To use `cached_key_result` add a key function as in `cached_key`.
cached_result!{
   MULT: UnboundCache<(u64, u64), u64> = UnboundCache::new(); // Type must always be specified
   fn mult(a: u64, b: u64) -> Result<u64, ()> = {
        if a == 0 || b == 0 {
            return Err(());
        } else {
            return Ok(a * b);
        }
   }
}
# pub fn main() { }
```

----

```rust,ignore
#[macro_use] extern crate cached;
use std::thread::sleep;
use std::time::Duration;
use cached::RedisCache;

cached! {
    UNBOUND_REDIS: RedisCache<u32, u32> = RedisCache::new();
    fn cached_redis(n: u32) -> u32 = {
        sleep(Duration::new(3, 0));
        n
    }
}

cached! {
    TIMED_REDIS: RedisCache<u32, u32> = RedisCache::with_lifespan(2);
    fn cached_timed_redis(n: u32) -> u32 = {
        sleep(Duration::new(3, 0));
        n
    }
}
# pub fn main() { }
```


----

## Syntax

The common macro syntax is:


```rust,ignore
cached_key!{
    CACHE_NAME: CacheType = CacheInstance;
    Key = KeyExpression;
    fn func_name(arg1: arg_type, arg2: arg_type) -> return_type = {
        // do stuff like normal
        return_type
    }
}
```

Where:

- `CACHE_NAME` is the unique name used to hold a `static ref` to the cache
- `CacheType` is the full type of the cache
- `CacheInstance` is any expression that yields an instance of `CacheType` to be used
  as the cache-store, followed by `;`
- When using the `cached_key!` macro, the "Key" line must be specified. This line must start with
  the literal tokens `Key = `, followed by an expression that evaluates to the key, followed by `;`
- `fn func_name(arg1: arg_type) -> return_type` is the same form as a regular function signature, with the exception
  that functions with no return value must be explicitly stated (e.g. `fn func_name(arg: arg_type) -> ()`)
- The expression following `=` is the function body assigned to `func_name`. Note, the function
  body can make recursive calls to its cached-self (`func_name`).


# Fine grained control using `cached_control!`

The `cached_control!` macro allows you to provide expressions that get plugged into key areas
of the memoized function. While the `cached` and `cached_result` variants are adequate for most
scenarios, it can be useful to have the ability to customize the macro's functionality.

```rust,no_run
#[macro_use] extern crate cached;

use cached::UnboundCache;

/// The following usage plugs in expressions to make the macro behave like
/// the `cached_result!` macro.
cached_control!{
    CACHE: UnboundCache<String, String> = UnboundCache::new();

    // Use an owned copy of the argument `input` as the cache key
    Key = { input.to_owned() };

    // If a cached value exists, it will bind to `cached_val` and
    // a `Result` will be returned containing a copy of the cached
    // evaluated body. This will return before the function body
    // is executed.
    PostGet(cached_val) = { return Ok(cached_val.clone()) };

    // The result of executing the function body will be bound to
    // `body_result`. In this case, the function body returns a `Result`.
    // We match on the `Result`, returning an early `Err` if the function errored.
    // Otherwise, we pass on the function's result to be cached.
    PostExec(body_result) = {
        match body_result {
            Ok(v) => v,
            Err(e) => return Err(e),
        }
    };

    // When inserting the value into the cache we bind
    // the to-be-set-value to `set_value` and give back a copy
    // of it to be inserted into the cache
    Set(set_value) = { set_value.clone() };

    // Before returning, print the value that will be returned
    Return(return_value) = {
        println!("{}", return_value);
        Ok(return_value)
    };

    fn can_fail(input: &str) -> Result<String, String> = {
        let len = input.len();
        if len < 3 { Ok(format!("{}-{}", input, len)) }
        else { Err("too big".to_string()) }
    }
}
# pub fn main() {}
```


 */

#[macro_export]
macro_rules! cached {
    // Use default cached::Cache
    ($cachename:ident;
     fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        cached!(
            $cachename : $crate::UnboundCache<($($argtype),*), $ret> = $crate::UnboundCache::new();
            fn $name($($arg : $argtype),*) -> $ret = $body
        );
    };

    // Use a specified cache-type and an explicitly created cache-instance
    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub fn $name($($arg: $argtype),*) -> $ret {
            let key = ($($arg.clone()),*);
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return res.clone(); }
            }
            let val = (||$body)();
            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            val
        }
    };

    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     async fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:block) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub async fn $name($($arg: $argtype),*) -> $ret {
            let key = ($($arg.clone()),*);
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return res.clone(); }
            }
            // run the function and cache the result
            async fn inner($($arg: $argtype),*) -> $ret $body
            let val = inner($($arg),*).await;

            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            val
        }
    };
}

#[macro_export]
macro_rules! cached_key {
    // Use a specified cache-type and an explicitly created cache-instance
    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     Key = $key:expr;
     fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub fn $name($($arg: $argtype),*) -> $ret {
            let key = $key;
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return res.clone(); }
            }
            let val = (||$body)();
            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            val
        }
    };

    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     Key = $key:expr;
     async fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub async fn $name($($arg: $argtype),*) -> $ret {
            let key = $key;
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return res.clone(); }
            }
            // run the function and cache the result
            async fn inner($($arg: $argtype),*) -> $ret $body
            let val = inner($($arg),*).await;
            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            val
        }
    };
}

#[macro_export]
macro_rules! cached_result {
    // Unfortunately it's impossible to infer the cache type because it's not the function return type
    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub fn $name($($arg: $argtype),*) -> $ret {
            let key = ($($arg.clone()),*);
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return Ok(res.clone()); }
            }

            // Store return in temporary typed variable in case type cannot be inferred
            let ret : $ret = (||$body)();
            let val = ret?;

            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            Ok(val)
        }
    };

    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     async fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub async fn $name($($arg: $argtype),*) -> $ret {
            let key = ($($arg.clone()),*);
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return Ok(res.clone()); }
            }

            // run the function and cache the result
            async fn inner($($arg: $argtype),*) -> $ret $body
            let val = inner($($arg),*).await?;

            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            Ok(val)
        }
    };
}

#[macro_export]
macro_rules! cached_key_result {
    // Use a specified cache-type and an explicitly created cache-instance
    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     Key = $key:expr;
     fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub fn $name($($arg: $argtype),*) -> $ret {
            let key = $key;
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return Ok(res.clone()); }
            }

            // Store return in temporary typed variable in case type cannot be inferred
            let ret : $ret = (||$body)();
            let val = ret?;

            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            Ok(val)
        }
    };

    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     Key = $key:expr;
     async fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub async fn $name($($arg: $argtype),*) -> $ret {
            let key = $key;
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some(res) = res { return Ok(res.clone()); }
            }

            // run the function and cache the result
            async fn inner($($arg: $argtype),*) -> $ret $body
            let val = inner($($arg),*).await?;

            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, val.clone());
            Ok(val)
        }
    };
}

#[macro_export]
macro_rules! cached_control {
    // Use a specified cache-type and an explicitly created cache-instance
    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     Key = $key:expr;
     PostGet($cached_value:ident) = $post_get:expr;
     PostExec($body_value:ident) = $post_exec:expr;
     Set($set_value:ident) = $pre_set:expr;
     Return($ret_value:ident) = $return:expr;
     fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub fn $name($($arg: $argtype),*) -> $ret {
            let key = $key;
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some($cached_value) = res {
                    $post_get
                }
            }
            let $body_value = (||$body)();
            let $set_value = $post_exec;
            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, $pre_set);
            let $ret_value = $set_value;
            $return
        }
    };

    ($cachename:ident : $cachetype:ty = $cacheinstance:expr ;
     Key = $key:expr;
     PostGet($cached_value:ident) = $post_get:expr;
     PostExec($body_value:ident) = $post_exec:expr;
     Set($set_value:ident) = $pre_set:expr;
     Return($ret_value:ident) = $return:expr;
     async fn $name:ident ($($arg:ident : $argtype:ty),*) -> $ret:ty = $body:expr) => {
        static $cachename: $crate::once_cell::sync::Lazy<::std::sync::Mutex<$cachetype>>
            = $crate::once_cell::sync::Lazy::new(|| ::std::sync::Mutex::new($cacheinstance));

        #[allow(unused_parens)]
        pub async fn $name($($arg: $argtype),*) -> $ret {
            let key = $key;
            {
                let mut cache = $cachename.lock().unwrap();
                let res = $crate::Cached::cache_get(&mut *cache, &key);
                if let Some($cached_value) = res {
                    $post_get
                }
            }
             // run the function and cache the result
            async fn inner($($arg: $argtype),*) -> $ret $body
            let $body_value = inner($($arg),*).await?;
            let $set_value = $post_exec;
            let mut cache = $cachename.lock().unwrap();
            $crate::Cached::cache_set(&mut *cache, key, $pre_set);
            let $ret_value = $set_value;
            $return
        }
    };
}