1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*!
Implementation of various caches

*/

use std::collections::{HashMap, LinkedList};
use std::time::{Instant};
use std::hash::Hash;
use std::cmp::Eq;

use super::Cached;


/// Default unbounded cache
pub struct Cache<K: Hash + Eq, V> {
    store: HashMap<K, V>,
    hits: u32,
    misses: u32,
}

impl <K: Hash + Eq, V> Cache<K, V> {
    /// Creates an empty `Cache`
    pub fn new() -> Cache<K, V> {
        Cache {
            store: HashMap::new(),
            hits: 0,
            misses: 0,
        }
    }

    /// Creates an empty `Cache` with a given pre-allocated capacity
    pub fn with_capacity(size: usize) -> Cache<K, V> {
        Cache {
            store: HashMap::with_capacity(size),
            hits: 0,
            misses: 0,
        }
    }
}

impl <K: Hash + Eq, V> Cached<K, V> for Cache<K, V> {
    fn cache_get(&mut self, key: &K) -> Option<&V> {
        match self.store.get(key) {
            Some(v) => {
                self.hits += 1;
                Some(v)
            }
            None =>  {
                self.misses += 1;
                None
            }
        }
    }
    fn cache_set(&mut self, key: K, val: V) {
        self.store.insert(key, val);
    }
    fn cache_size(&self) -> usize { self.store.len() }
    fn cache_hits(&self) -> Option<u32> { Some(self.hits) }
    fn cache_misses(&self) -> Option<u32> { Some(self.misses) }
}


/// Least Recently Used / `Sized` Cache
/// - Stores up to a specified sized before beginning
///   to evict the least recently used keys
pub struct SizedCache<K: Hash + Eq, V> {
    store: HashMap<K, V>,
    order: LinkedList<K>,
    capacity: usize,
    hits: u32,
    misses: u32,
}

impl<K: Hash + Eq, V> SizedCache<K, V> {
    /// Creates a new `SizedCache` with a given capacity
    pub fn with_capacity(size: usize) -> SizedCache<K, V> {
        if size == 0 { panic!("`size` of `SizedCache` must be greater than zero.") }
        SizedCache {
            store: HashMap::with_capacity(size),
            order: LinkedList::new(),
            capacity: size,
            hits: 0,
            misses: 0,
        }
    }
}

impl<K: Hash + Eq + Clone, V> Cached<K, V> for SizedCache<K, V> {
    fn cache_get(&mut self, key: &K) -> Option<&V> {
        let val = self.store.get(key);
        if val.is_some() {
            // if there's something in `self.store`, then `self.order`
            // cannot be empty, and `key` must be present
            let index = self.order.iter().enumerate()
                            .find(|&(_, e)| { key == e })
                            .unwrap().0;
            let mut tail = self.order.split_off(index);
            let used = tail.pop_front().unwrap();
            self.order.push_front(used);
            self.order.append(&mut tail);
            self.hits += 1;
        } else { self.misses += 1; }
        val
    }
    fn cache_set(&mut self, key: K, val: V) {
        if self.store.len() < self.capacity {
            self.store.insert(key.clone(), val);
            self.order.push_front(key);
        } else {
            // store capacity cannot be zero, so there must be content in `self.order`
            let lru_key = self.order.pop_back().unwrap();
            self.store.remove(&lru_key).unwrap();
            self.store.insert(key.clone(), val);
            self.order.push_front(key);
        }
    }
    fn cache_size(&self) -> usize { self.store.len() }
    fn cache_hits(&self) -> Option<u32> { Some(self.hits) }
    fn cache_misses(&self) -> Option<u32> { Some(self.misses) }
    fn cache_capacity(&self) -> Option<usize> { Some(self.capacity) }
}


/// Enum used for defining the status of time-cached values
enum Status {
    NotFound,
    Found,
    Expired,
}


/// Cache store bound by time
/// - Values are timestamped when inserted and are
///   expired on attempted retrieval.
pub struct TimedCache<K: Hash + Eq, V> {
    store: HashMap<K, (Instant, V)>,
    seconds: u64,
    hits: u32,
    misses: u32,
}

impl<K: Hash + Eq, V> TimedCache<K, V> {
    /// Creates a new `TimedCache` with a specified lifespan
    pub fn with_lifespan(seconds: u64) -> TimedCache<K, V> {
        TimedCache {
            store: HashMap::new(),
            seconds: seconds,
            hits: 0,
            misses: 0,
        }
    }

    /// Creates a new `TimedCache` with a specified lifespan and
    /// cache-store with the specified pre-allocated capacity
    pub fn with_lifespan_and_capacity(seconds: u64, size: usize) -> TimedCache<K, V> {
        TimedCache {
            store: HashMap::with_capacity(size),
            seconds: seconds,
            hits: 0,
            misses: 0,
        }
    }
}

impl<K: Hash + Eq, V> Cached<K, V> for TimedCache<K, V> {
    fn cache_get(&mut self, key: &K) -> Option<&V> {
        let status = {
            let val = self.store.get(key);
            if let Some(&(instant, _)) = val {
                if instant.elapsed().as_secs() < self.seconds {
                    Status::Found
                } else {
                    Status::Expired
                }
            } else {
                 Status::NotFound
            }
        };
        match status {
            Status::NotFound => {
                self.misses += 1;
                None
            }
            Status::Found    => {
                self.hits += 1;
                self.store.get(key).map(|stamped| &stamped.1)
            }
            Status::Expired  => {
                self.misses += 1;
                self.store.remove(key).unwrap();
                None
            }
        }
    }
    fn cache_set(&mut self, key: K, val: V) {
        let stamped = (Instant::now(), val);
        self.store.insert(key, stamped);
    }
    fn cache_size(&self) -> usize {
        self.store.len()
    }
    fn cache_hits(&self) -> Option<u32> { Some(self.hits) }
    fn cache_misses(&self) -> Option<u32> { Some(self.misses) }
    fn cache_lifespan(&self) -> Option<u64> { Some(self.seconds) }
}


#[cfg(test)]
/// Cache store tests
mod tests {
    use std::time::Duration;
    use std::thread::sleep;

    use super::Cached;

    use super::Cache;
    use super::SizedCache;
    use super::TimedCache;

    #[test]
    fn basic_cache() {
        let mut c = Cache::new();
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, misses);

        c.cache_set(1, 100);
        assert!(c.cache_get(&1).is_some());
        let hits = c.cache_hits().unwrap();
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, hits);
        assert_eq!(1, misses);
    }

    #[test]
    fn sized_cache() {
        let mut c = SizedCache::with_capacity(5);
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, misses);

        c.cache_set(1, 100);
        assert!(c.cache_get(&1).is_some());
        let hits = c.cache_hits().unwrap();
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, hits);
        assert_eq!(1, misses);

        c.cache_set(2, 100);
        c.cache_set(3, 100);
        c.cache_set(4, 100);
        c.cache_set(5, 100);
        c.cache_set(6, 100);
        c.cache_set(7, 100);
        let size = c.cache_size();
        assert_eq!(5, size);
    }

    #[test]
    fn timed_cache() {
        let mut c = TimedCache::with_lifespan(2);
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, misses);

        c.cache_set(1, 100);
        assert!(c.cache_get(&1).is_some());
        let hits = c.cache_hits().unwrap();
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, hits);
        assert_eq!(1, misses);

        sleep(Duration::new(2, 0));
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(2, misses);
    }
}