1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2012 The Rust Project Developers.
// Copyright 2015 Guillaume Gomez
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Library to interface with chunks of memory allocated in C.
//!
//! It is often desirable to safely interface with memory allocated from C,
//! encapsulating the unsafety into allocation and destruction time.  Indeed,
//! allocating memory externally is currently the only way to give Rust shared
//! mut state with C programs that keep their own references; vectors are
//! unsuitable because they could be reallocated or moved at any time, and
//! importing C memory into a vector takes a one-time snapshot of the memory.
//!
//! This module simplifies the usage of such external blocks of memory.  Memory
//! is encapsulated into an opaque object after creation; the lifecycle of the
//! memory can be optionally managed by Rust, if an appropriate destructor
//! closure is provided.  Safety is ensured by bounds-checking accesses, which
//! are marshalled through get and set functions.
//!
//! There are three unsafe functions: the two constructors, and the
//! unwrapping method. The constructors are unsafe for the
//! obvious reason (they act on a pointer that cannot be checked inside the
//! method), but `into_inner()` is somewhat more subtle in its unsafety.
//! It returns the contained pointer, but at the same time destroys the CVec
//! without running its destructor. This can be used to pass memory back to
//! C, but care must be taken that the ownership of underlying resources are
//! handled correctly, i.e. that allocated memory is eventually freed
//! if necessary.
//!
//! # Example
//!
//! ```
//! use c_vec::CVec;
//!
//! let slice = &mut [0, 1, 2];
//! let ptr = slice.as_mut_ptr();
//! let cvec = unsafe { CVec::new(ptr, slice.len()) };
//! for elem in cvec.iter() {
//!     println!("=> {}", elem);
//! }
//! ```

#[cfg(test)]
#[macro_use]
extern crate doc_comment;

#[cfg(test)]
doctest!("../README.md");

mod c_slice;
mod c_vec;

pub use c_slice::*;
pub use c_vec::*;

#[cfg(test)]
mod tests {
    extern crate libc;

    use super::{CSlice, CVec};
    use std::ptr;

    // allocation of CVec
    fn v_malloc(n: usize) -> CVec<u8> {
        unsafe {
            let mem = libc::malloc(n as _) as *mut u8;
            CVec::new_with_dtor(mem, n, |mem| {
                libc::free((mem) as *mut _);
            })
        }
    }

    // allocation of CSlice
    macro_rules! s_malloc {
        ($n:expr) => {{
            unsafe {
                let mem: *mut u8 = libc::malloc($n as _) as *mut _;
                CSlice::new(mem, $n)
            }
        }};
    }

    #[test]
    fn vec_test_basic() {
        let mut cv = v_malloc(16);

        *cv.get_mut(3).unwrap() = 8;
        *cv.get_mut(4).unwrap() = 9;
        assert_eq!(*cv.get(3).unwrap(), 8);
        assert_eq!(*cv.get(4).unwrap(), 9);
        assert_eq!(*cv.get(3).unwrap(), cv[3]);
        assert_eq!(*cv.get(4).unwrap(), cv[4]);
        assert_eq!(cv.len(), 16);
    }

    #[test]
    fn slice_test_basic() {
        let mut cs = v_malloc(16);

        cs[3] = 8;
        cs[4] = 9;
        assert_eq!(cs[3], 8);
        assert_eq!(cs[4], 9);
        assert_eq!(cs.len(), 16);

        let cs = cs.as_cslice();
        assert_eq!(cs[3], 8);
        assert_eq!(cs[4], 9);
        assert_eq!(cs.len(), 16);
    }

    #[test]
    #[should_panic]
    fn vec_test_panic_at_null() {
        unsafe {
            CVec::new(ptr::null_mut::<u8>(), 9);
        }
    }

    #[test]
    #[should_panic]
    fn slice_test_panic_at_null() {
        unsafe {
            CSlice::new(ptr::null_mut::<u8>(), 9);
        }
    }

    #[test]
    fn vec_test_overrun_get() {
        let cv = v_malloc(16);

        assert!(cv.get(17).is_none());
    }

    #[test]
    #[should_panic]
    fn slice_test_overrun_get() {
        let cs = s_malloc!(16);

        assert!(cs[17] == 18);
    }

    #[test]
    fn vec_test_overrun_set() {
        let mut cv = v_malloc(16);

        assert!(cv.get_mut(17).is_none());
    }

    #[test]
    fn vec_test_unwrap() {
        unsafe {
            let cv =
                CVec::new_with_dtor(1 as *mut isize, 0, |_| panic!("Don't run this destructor!"));
            let p = cv.into_inner();
            assert_eq!(p, 1 as *mut isize);
        }
    }

    #[test]
    fn vec_to_slice_test() {
        let mut cv = v_malloc(2);

        *cv.get_mut(0).unwrap() = 10;
        *cv.get_mut(1).unwrap() = 12;

        let cs = cv.as_cslice();

        assert_eq!(cs[0], 10);
        assert_eq!(cs[1], 12);
    }

    #[test]
    fn slice_to_vec_test() {
        let mut cv = v_malloc(2);
        {
            let mut cs = cv.as_cslice_mut();

            cs[0] = 13;
            cs[1] = 26;
        }
        assert_eq!(*cv.get(0).unwrap(), 13);
        assert_eq!(*cv.get(1).unwrap(), 26);
    }

    #[test]
    fn convert_test() {
        let mut cv = v_malloc(2);
        {
            let mut cs = cv.as_cslice_mut();
            cs[0] = 1;
            cs[1] = 99;
            let v: Vec<_> = cs.into();
            assert_eq!(1, v[0]);
            assert_eq!(99, v[1]);
        }
        assert_eq!(1, cv[0]);
        assert_eq!(99, cv[1]);
    }

    #[test]
    fn iter_cvec() {
        let mut cv = v_malloc(2);

        {
            let mut cs = cv.as_cslice_mut();

            cs[0] = 13;
            cs[1] = 26;
        }

        let mut iter = cv.iter();
        assert_eq!(iter.next(), Some(&13));
        assert_eq!(iter.next(), Some(&26));
        assert_eq!(iter.next(), None);
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn iter_cslice() {
        let mut cs = v_malloc(2);

        cs[0] = 13;
        cs[1] = 26;

        let slice = cs.as_cslice();
        let mut iter = slice.iter();
        assert_eq!(iter.next(), Some(&13));
        assert_eq!(iter.next(), Some(&26));
        assert_eq!(iter.next(), None);
        assert_eq!(iter.next(), None);
    }
}