1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use std::io::{self, Result};

use ByteOrder;

/// Extends `Read` with methods for reading numbers. (For `std::io`.)
///
/// Most of the methods defined here have an unconstrained type parameter that
/// must be explicitly instantiated. Typically, it is instantiated with either
/// the `BigEndian` or `LittleEndian` types defined in this crate.
///
/// # Examples
///
/// Read unsigned 16 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
/// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap());
/// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap());
/// ```
pub trait ReadBytesExt: io::Read {
    /// Reads an unsigned 8 bit integer from the underlying reader.
    ///
    /// Note that since this reads a single byte, no byte order conversions
    /// are used. It is included for completeness.
    #[inline]
    fn read_u8(&mut self) -> Result<u8> {
        let mut buf = [0; 1];
        try!(self.read_exact(&mut buf));
        Ok(buf[0])
    }

    /// Reads a signed 8 bit integer from the underlying reader.
    ///
    /// Note that since this reads a single byte, no byte order conversions
    /// are used. It is included for completeness.
    #[inline]
    fn read_i8(&mut self) -> Result<i8> {
        let mut buf = [0; 1];
        try!(self.read_exact(&mut buf));
        Ok(buf[0] as i8)
    }

    /// Reads an unsigned 16 bit integer from the underlying reader.
    #[inline]
    fn read_u16<T: ByteOrder>(&mut self) -> Result<u16> {
        let mut buf = [0; 2];
        try!(self.read_exact(&mut buf));
        Ok(T::read_u16(&buf))
    }

    /// Reads a signed 16 bit integer from the underlying reader.
    #[inline]
    fn read_i16<T: ByteOrder>(&mut self) -> Result<i16> {
        let mut buf = [0; 2];
        try!(self.read_exact(&mut buf));
        Ok(T::read_i16(&buf))
    }

    /// Reads an unsigned 32 bit integer from the underlying reader.
    #[inline]
    fn read_u32<T: ByteOrder>(&mut self) -> Result<u32> {
        let mut buf = [0; 4];
        try!(self.read_exact(&mut buf));
        Ok(T::read_u32(&buf))
    }

    /// Reads a signed 32 bit integer from the underlying reader.
    #[inline]
    fn read_i32<T: ByteOrder>(&mut self) -> Result<i32> {
        let mut buf = [0; 4];
        try!(self.read_exact(&mut buf));
        Ok(T::read_i32(&buf))
    }

    /// Reads an unsigned 64 bit integer from the underlying reader.
    #[inline]
    fn read_u64<T: ByteOrder>(&mut self) -> Result<u64> {
        let mut buf = [0; 8];
        try!(self.read_exact(&mut buf));
        Ok(T::read_u64(&buf))
    }

    /// Reads a signed 64 bit integer from the underlying reader.
    #[inline]
    fn read_i64<T: ByteOrder>(&mut self) -> Result<i64> {
        let mut buf = [0; 8];
        try!(self.read_exact(&mut buf));
        Ok(T::read_i64(&buf))
    }

    /// Reads an unsigned n-bytes integer from the underlying reader.
    #[inline]
    fn read_uint<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u64> {
        let mut buf = [0; 8];
        try!(self.read_exact(&mut buf[..nbytes]));
        Ok(T::read_uint(&buf[..nbytes], nbytes))
    }

    /// Reads a signed n-bytes integer from the underlying reader.
    #[inline]
    fn read_int<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i64> {
        let mut buf = [0; 8];
        try!(self.read_exact(&mut buf[..nbytes]));
        Ok(T::read_int(&buf[..nbytes], nbytes))
    }

    /// Reads a IEEE754 single-precision (4 bytes) floating point number from
    /// the underlying reader.
    #[inline]
    fn read_f32<T: ByteOrder>(&mut self) -> Result<f32> {
        let mut buf = [0; 4];
        try!(self.read_exact(&mut buf));
        Ok(T::read_f32(&buf))
    }

    /// Reads a IEEE754 double-precision (8 bytes) floating point number from
    /// the underlying reader.
    #[inline]
    fn read_f64<T: ByteOrder>(&mut self) -> Result<f64> {
        let mut buf = [0; 8];
        try!(self.read_exact(&mut buf));
        Ok(T::read_f64(&buf))
    }
}

/// All types that implement `Read` get methods defined in `ReadBytesExt`
/// for free.
impl<R: io::Read + ?Sized> ReadBytesExt for R {}

/// Extends `Write` with methods for writing numbers. (For `std::io`.)
///
/// Most of the methods defined here have an unconstrained type parameter that
/// must be explicitly instantiated. Typically, it is instantiated with either
/// the `BigEndian` or `LittleEndian` types defined in this crate.
///
/// # Examples
///
/// Write unsigned 16 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = vec![];
/// wtr.write_u16::<BigEndian>(517).unwrap();
/// wtr.write_u16::<BigEndian>(768).unwrap();
/// assert_eq!(wtr, vec![2, 5, 3, 0]);
/// ```
pub trait WriteBytesExt: io::Write {
    /// Writes an unsigned 8 bit integer to the underlying writer.
    ///
    /// Note that since this writes a single byte, no byte order conversions
    /// are used. It is included for completeness.
    #[inline]
    fn write_u8(&mut self, n: u8) -> Result<()> {
        self.write_all(&[n])
    }

    /// Writes a signed 8 bit integer to the underlying writer.
    ///
    /// Note that since this writes a single byte, no byte order conversions
    /// are used. It is included for completeness.
    #[inline]
    fn write_i8(&mut self, n: i8) -> Result<()> {
        self.write_all(&[n as u8])
    }

    /// Writes an unsigned 16 bit integer to the underlying writer.
    #[inline]
    fn write_u16<T: ByteOrder>(&mut self, n: u16) -> Result<()> {
        let mut buf = [0; 2];
        T::write_u16(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes a signed 16 bit integer to the underlying writer.
    #[inline]
    fn write_i16<T: ByteOrder>(&mut self, n: i16) -> Result<()> {
        let mut buf = [0; 2];
        T::write_i16(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes an unsigned 32 bit integer to the underlying writer.
    #[inline]
    fn write_u32<T: ByteOrder>(&mut self, n: u32) -> Result<()> {
        let mut buf = [0; 4];
        T::write_u32(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes a signed 32 bit integer to the underlying writer.
    #[inline]
    fn write_i32<T: ByteOrder>(&mut self, n: i32) -> Result<()> {
        let mut buf = [0; 4];
        T::write_i32(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes an unsigned 64 bit integer to the underlying writer.
    #[inline]
    fn write_u64<T: ByteOrder>(&mut self, n: u64) -> Result<()> {
        let mut buf = [0; 8];
        T::write_u64(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes a signed 64 bit integer to the underlying writer.
    #[inline]
    fn write_i64<T: ByteOrder>(&mut self, n: i64) -> Result<()> {
        let mut buf = [0; 8];
        T::write_i64(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes an unsigned n-bytes integer to the underlying writer.
    ///
    /// If the given integer is not representable in the given number of bytes,
    /// this method panics. If `nbytes > 8`, this method panics.
    #[inline]
    fn write_uint<T: ByteOrder>(
        &mut self,
        n: u64,
        nbytes: usize,
    ) -> Result<()> {
        let mut buf = [0; 8];
        T::write_uint(&mut buf, n, nbytes);
        self.write_all(&buf[0..nbytes])
    }

    /// Writes a signed n-bytes integer to the underlying writer.
    ///
    /// If the given integer is not representable in the given number of bytes,
    /// this method panics. If `nbytes > 8`, this method panics.
    #[inline]
    fn write_int<T: ByteOrder>(
        &mut self,
        n: i64,
        nbytes: usize,
    ) -> Result<()> {
        let mut buf = [0; 8];
        T::write_int(&mut buf, n, nbytes);
        self.write_all(&buf[0..nbytes])
    }

    /// Writes a IEEE754 single-precision (4 bytes) floating point number to
    /// the underlying writer.
    #[inline]
    fn write_f32<T: ByteOrder>(&mut self, n: f32) -> Result<()> {
        let mut buf = [0; 4];
        T::write_f32(&mut buf, n);
        self.write_all(&buf)
    }

    /// Writes a IEEE754 double-precision (8 bytes) floating point number to
    /// the underlying writer.
    #[inline]
    fn write_f64<T: ByteOrder>(&mut self, n: f64) -> Result<()> {
        let mut buf = [0; 8];
        T::write_f64(&mut buf, n);
        self.write_all(&buf)
    }
}

/// All types that implement `Write` get methods defined in `WriteBytesExt`
/// for free.
impl<W: io::Write + ?Sized> WriteBytesExt for W {}