1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
//! Derive macros for [bytemuck](https://docs.rs/bytemuck) traits.

extern crate proc_macro;

mod traits;

use proc_macro2::TokenStream;
use quote::quote;
use syn::{parse_macro_input, DeriveInput, Result};

use crate::traits::{
  AnyBitPattern, CheckedBitPattern, Contiguous, Derivable, NoUninit, Pod,
  TransparentWrapper, Zeroable,
};

/// Derive the `Pod` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `Pod` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must implement `Pod`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must not contain any padding bytes
/// - The struct contains no generic parameters
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Pod, Zeroable};
///
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(C)]
/// struct Test {
///   a: u16,
///   b: u16,
/// }
/// ```
#[proc_macro_derive(Pod)]
pub fn derive_pod(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<Pod>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `AnyBitPattern` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `AnyBitPattern` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must to implement `AnyBitPattern`
#[proc_macro_derive(AnyBitPattern)]
pub fn derive_anybitpattern(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded = derive_marker_trait::<AnyBitPattern>(parse_macro_input!(
    input as DeriveInput
  ));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `Zeroable` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `Zeroable` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must to implement `Zeroable`
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Zeroable};
///
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(C)]
/// struct Test {
///   a: u16,
///   b: u16,
/// }
/// ```
#[proc_macro_derive(Zeroable)]
pub fn derive_zeroable(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<Zeroable>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `NoUninit` trait for a struct or enum
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `NoUninit` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
/// (the rest of the constraints are guaranteed by the `NoUninit` subtrait
/// bounds, i.e. the type must be `Sized + Copy + 'static`):
///
/// If applied to a struct:
/// - All fields in the struct must implement `NoUninit`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must not contain any padding bytes
/// - The struct must contain no generic parameters
///
/// If applied to an enum:
/// - The enum must be explicit `#[repr(Int)]`
/// - All variants must be fieldless
/// - The enum must contain no generic parameters
#[proc_macro_derive(NoUninit)]
pub fn derive_no_uninit(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<NoUninit>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `CheckedBitPattern` trait for a struct or enum.
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `CheckedBitPattern` trait and derives the required `Bits` type
/// definition and `is_valid_bit_pattern` method for the type automatically.
///
/// The following constraints need to be satisfied for the macro to succeed
/// (the rest of the constraints are guaranteed by the `CheckedBitPattern`
/// subtrait bounds, i.e. are guaranteed by the requirements of the `NoUninit`
/// trait which `CheckedBitPattern` is a subtrait of):
///
/// If applied to a struct:
/// - All fields must implement `CheckedBitPattern`
///
/// If applied to an enum:
/// - All requirements already checked by `NoUninit`, just impls the trait
#[proc_macro_derive(CheckedBitPattern)]
pub fn derive_maybe_pod(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded = derive_marker_trait::<CheckedBitPattern>(parse_macro_input!(
    input as DeriveInput
  ));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `TransparentWrapper` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `TransparentWrapper` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - The struct must be `#[repr(transparent)]`
/// - The struct must contain the `Wrapped` type
///
/// If the struct only contains a single field, the `Wrapped` type will
/// automatically be determined if there is more then one field in the struct,
/// you need to specify the `Wrapped` type using `#[transparent(T)]`
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
///
/// #[derive(Copy, Clone, TransparentWrapper)]
/// #[repr(transparent)]
/// #[transparent(u16)]
/// struct Test<T> {
///   inner: u16,
///   extra: PhantomData<T>,
/// }
/// ```
#[proc_macro_derive(TransparentWrapper, attributes(transparent))]
pub fn derive_transparent(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded = derive_marker_trait::<TransparentWrapper>(parse_macro_input!(
    input as DeriveInput
  ));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `Contiguous` trait for an enum
///
/// The macro ensures that the enum follows all the the safety requirements
/// for the `Contiguous` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - The enum must be `#[repr(Int)]`
/// - The enum must be fieldless
/// - The enum discriminants must form a contiguous range
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Contiguous};
///
/// #[derive(Copy, Clone, Contiguous)]
/// #[repr(u8)]
/// enum Test {
///   A = 0,
///   B = 1,
///   C = 2,
/// }
/// ```
#[proc_macro_derive(Contiguous)]
pub fn derive_contiguous(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<Contiguous>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `PartialEq` and `Eq` trait for a type
///
/// The macro implements `PartialEq` and `Eq` by casting both sides of the
/// comparison to a byte slice and then compares those.
///
/// ## Warning
///
/// Since this implements a byte wise comparison, the behavior of floating point
/// numbers does not match their usual comparison behavior. Additionally other
/// custom comparison behaviors of the individual fields are also ignored. This
/// also does not implement `StructuralPartialEq` / `StructuralEq` like
/// `PartialEq` / `Eq` would. This means you can't pattern match on the values.
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{ByteEq, NoUninit};
/// #[derive(Copy, Clone, NoUninit, ByteEq)]
/// #[repr(C)]
/// struct Test {
///   a: u32,
///   b: char,
///   c: f32,
/// }
/// ```
#[proc_macro_derive(ByteEq)]
pub fn derive_byte_eq(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let input = parse_macro_input!(input as DeriveInput);
  let ident = input.ident;

  proc_macro::TokenStream::from(quote! {
    impl ::core::cmp::PartialEq for #ident {
      #[inline]
      #[must_use]
      fn eq(&self, other: &Self) -> bool {
        ::bytemuck::bytes_of(self) == ::bytemuck::bytes_of(other)
      }
    }
    impl ::core::cmp::Eq for #ident { }
  })
}

/// Derive the `Hash` trait for a type
///
/// The macro implements `Hash` by casting the value to a byte slice and hashing
/// that.
///
/// ## Warning
///
/// The hash does not match the standard library's `Hash` derive.
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{ByteHash, NoUninit};
/// #[derive(Copy, Clone, NoUninit, ByteHash)]
/// #[repr(C)]
/// struct Test {
///   a: u32,
///   b: char,
///   c: f32,
/// }
/// ```
#[proc_macro_derive(ByteHash)]
pub fn derive_byte_hash(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let input = parse_macro_input!(input as DeriveInput);
  let ident = input.ident;

  proc_macro::TokenStream::from(quote! {
    impl ::core::hash::Hash for #ident {
      #[inline]
      fn hash<H: ::core::hash::Hasher>(&self, state: &mut H) {
        ::core::hash::Hash::hash_slice(::bytemuck::bytes_of(self), state)
      }

      #[inline]
      fn hash_slice<H: ::core::hash::Hasher>(data: &[Self], state: &mut H) {
        ::core::hash::Hash::hash_slice(::bytemuck::cast_slice::<_, u8>(data), state)
      }
    }
  })
}

/// Basic wrapper for error handling
fn derive_marker_trait<Trait: Derivable>(input: DeriveInput) -> TokenStream {
  derive_marker_trait_inner::<Trait>(input)
    .unwrap_or_else(|err| err.into_compile_error())
}

fn derive_marker_trait_inner<Trait: Derivable>(
  mut input: DeriveInput,
) -> Result<TokenStream> {
  // Enforce Pod on all generic fields.
  let trait_ = Trait::ident(&input)?;
  add_trait_marker(&mut input.generics, &trait_);

  let name = &input.ident;

  let (impl_generics, ty_generics, where_clause) =
    input.generics.split_for_impl();

  Trait::check_attributes(&input.data, &input.attrs)?;
  let asserts = Trait::asserts(&input)?;
  let (trait_impl_extras, trait_impl) = Trait::trait_impl(&input)?;

  let implies_trait = if let Some(implies_trait) = Trait::implies_trait() {
    quote!(unsafe impl #implies_trait for #name {})
  } else {
    quote!()
  };

  let where_clause = if Trait::requires_where_clause() {
    where_clause
  } else {
    None
  };

  Ok(quote! {
    #asserts

    #trait_impl_extras

    unsafe impl #impl_generics #trait_ for #name #ty_generics #where_clause {
      #trait_impl
    }

    #implies_trait
  })
}

/// Add a trait marker to the generics if it is not already present
fn add_trait_marker(generics: &mut syn::Generics, trait_name: &syn::Path) {
  // Get each generic type parameter.
  let type_params = generics
    .type_params()
    .map(|param| &param.ident)
    .map(|param| syn::parse_quote!(
      #param: #trait_name
    )).collect::<Vec<syn::WherePredicate>>();

  generics.make_where_clause().predicates.extend(type_params);
}