1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
use byteorder::{WriteBytesExt, BE};
use serde::{self, Serialize};
use std::error::Error as StdError;
use std::fmt;
use std::io::{self, Write};
use std::mem::transmute;
use std::{self, i16, i32, i64, i8};

/// A serializer for a byte format that preserves lexicographic sort order.
///
/// The byte format is designed with a few goals:
///
/// * Order must be preserved
/// * Serialized representations should be as compact as possible
/// * Type information is *not* serialized with values
///
/// #### Supported Data Types
///
/// ##### Unsigned Integers
///
/// `u8`, `u16`, `u32`, and `u64` are serialized into 1, 2, 4, and 8 bytes of output, respectively.
/// Order is preserved by encoding the bytes in big-endian (most-significant bytes first) format.
/// `usize` is always serialized as if it were `u64`.
///
/// The `Serializer` also supports variable-length serialization of unsigned integers via the
/// `serialize_var_u64` method. Smaller magnitude values (closer to 0) will encode into fewer
/// bytes.
///
/// ##### Signed Integers
///
/// `i8`, `i16`, `i32`, and `i64` are encoded into 1, 2, 4, and 8 bytes of output, respectively.
/// Order is preserved by taking the bitwise complement of the value, and encoding the resulting
/// bytes in big-endian format. `isize` is always serialized as if it were `i64`.
///
/// The `Serializer` also supports variable-length serialization of signed integers via the
/// `serialize_var_i64` method. Smaller magnitude values (closer to 0) will encode into fewer
/// bytes.
///
/// ##### Floating Point Numbers
///
/// `f32` and `f64` are serialized into 4 and 8 bytes of output, respectively. Order is preserved
/// by encoding the value, or the bitwise complement of the value if negative, into bytes in
/// big-endian format. `NAN` values will sort after all other values. In general, it is unwise to
/// use IEEE 754 floating point values in keys, because rounding errors are pervasive.  It is
/// typically hard or impossible to use an approximate 'epsilon' approach when using keys for
/// lookup.
///
/// ##### Characters
///
/// Characters are serialized into between 1 and 4 bytes of output. The resulting length is
/// equivalent to the result of `char::len_utf8`.
///
/// ##### Booleans
///
/// Booleans are serialized into a single byte of output. `false` values will sort before `true`
/// values.
///
/// ##### Options
///
/// An optional wrapper type adds a 1 byte overhead to the wrapped data type. `None` values will
/// sort before `Some` values.
///
/// ##### Structs, Tuples and Fixed-Size Arrays
///
/// Structs and tuples are serialized by serializing their consituent fields in order with no
/// prefix, suffix, or padding bytes.
///
/// ##### Enums
///
/// Enums are encoded with a `u32` variant index tag, plus the consituent fields in the case of an
/// enum-struct.
///
/// ##### Sequences, Strings and Maps
///
/// Sequences are ordered from the most significant to the least. Strings are serialized into their
/// natural UTF8 representation.
///
/// The ordering of sequential elements follows the `Ord` implementation of `slice`, that is, from
/// left to write when viewing a `Vec` printed via the `{:?}` formatter.
///
/// The caveat with these types is that their length must be known before deserialization. This is
/// because the length is *not* serialized prior to the elements in order to preserve ordering and
/// there is no trivial way to tokenise between sequential elements that 1. does not corrupt
/// ordering and 2. may not confuse tokenisation with following elements of a different type during
/// tuple or struct deserialization. Thus, when deserializing sequences, strings and maps, the
/// process will only be considered complete once the inner `reader` produces an EOF character.
#[derive(Debug)]
pub struct Serializer<W>
where
    W: Write,
{
    writer: W,
}

/// Errors that might occur while serializing.
#[derive(Debug)]
pub enum Error {
    /// Errors that might occur during serialization.
    ///
    /// E.g. the `Serialize` impl for `Mutex<T>` might return an error because the mutex is
    /// poisoned.
    Message(String),
    Io(io::Error),
}

/// Shorthand for `Result<T, bytekey::ser::Error>`.
pub type Result<T> = std::result::Result<T, Error>;

/// Serialize data into a vector of `u8` bytes.
///
/// #### Usage
///
/// ```
/// # use bytekey::serialize;
/// assert_eq!(vec!(0x00, 0x00, 0x00, 0x2A), serialize(&42u32).unwrap());
/// assert_eq!(vec!(0x66, 0x69, 0x7A, 0x7A, 0x62, 0x75, 0x7A, 0x7A, 0x00), serialize(&"fizzbuzz").unwrap());
/// assert_eq!(vec!(0x2A, 0x66, 0x69, 0x7A, 0x7A, 0x00), serialize(&(42u8, "fizz")).unwrap());
/// ```
pub fn serialize<T>(v: &T) -> Result<Vec<u8>>
where
    T: Serialize,
{
    let mut bytes = vec![];
    {
        let mut buffered = io::BufWriter::new(&mut bytes);
        serialize_into(&mut buffered, v)?;
    }
    Ok(bytes)
}

/// Serialize data into the given vector of `u8` bytes.
///
/// #### Usage
///
/// ```
/// # use bytekey::serialize_into;
/// let mut bytes = vec![];
/// bytekey::serialize_into(&mut bytes, &5u8).unwrap();
/// assert_eq!(vec![5u8], bytes.clone());
/// bytekey::serialize_into(&mut bytes, &10u8).unwrap();
/// assert_eq!(vec![5u8, 10], bytes.clone());
/// ```
pub fn serialize_into<W, T>(writer: W, value: &T) -> Result<()>
where
    W: Write,
    T: Serialize,
{
    let mut serializer = Serializer::new(writer);
    value.serialize(&mut serializer)
}

impl<W> Serializer<W>
where
    W: Write,
{
    /// Creates a new ordered bytes encoder whose output will be written to the provided writer.
    pub fn new(writer: W) -> Serializer<W> {
        Serializer { writer: writer }
    }

    /// Encode a `u64` into a variable number of bytes.
    ///
    /// The variable-length encoding scheme uses between 1 and 9 bytes depending on the value.
    /// Smaller magnitude (closer to 0) `u64`s will encode to fewer bytes.
    ///
    /// ##### Encoding
    ///
    /// The encoding uses the first 4 bits to store the number of trailing bytes, between 0 and 8.
    /// Subsequent bits are the input value in big-endian format with leading 0 bytes removed.
    ///
    /// ##### Encoded Size
    ///
    /// <table>
    ///     <tr>
    ///         <th>range</th>
    ///         <th>size (bytes)</th>
    ///     </tr>
    ///     <tr>
    ///         <td>[0, 2<sup>4</sup>)</td>
    ///         <td>1</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>4</sup>, 2<sup>12</sup>)</td>
    ///         <td>2</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>12</sup>, 2<sup>20</sup>)</td>
    ///         <td>3</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>20</sup>, 2<sup>28</sup>)</td>
    ///         <td>4</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>28</sup>, 2<sup>36</sup>)</td>
    ///         <td>5</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>36</sup>, 2<sup>44</sup>)</td>
    ///         <td>6</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>44</sup>, 2<sup>52</sup>)</td>
    ///         <td>7</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>52</sup>, 2<sup>60</sup>)</td>
    ///         <td>8</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[2<sup>60</sup>, 2<sup>64</sup>)</td>
    ///         <td>9</td>
    ///     </tr>
    /// </table>
    pub fn serialize_var_u64(&mut self, val: u64) -> Result<()> {
        if val < 1 << 4 {
            self.writer.write_u8(val as u8)
        } else if val < 1 << 12 {
            self.writer.write_u16::<BE>((val as u16) | 1 << 12)
        } else if val < 1 << 20 {
            self.writer.write_u8(((val >> 16) as u8) | 2 << 4)?;
            self.writer.write_u16::<BE>(val as u16)
        } else if val < 1 << 28 {
            self.writer.write_u32::<BE>((val as u32) | 3 << 28)
        } else if val < 1 << 36 {
            self.writer.write_u8(((val >> 32) as u8) | 4 << 4)?;
            self.writer.write_u32::<BE>(val as u32)
        } else if val < 1 << 44 {
            self.writer.write_u16::<BE>(((val >> 32) as u16) | 5 << 12)?;
            self.writer.write_u32::<BE>(val as u32)
        } else if val < 1 << 52 {
            self.writer.write_u8(((val >> 48) as u8) | 6 << 4)?;
            self.writer.write_u16::<BE>((val >> 32) as u16)?;
            self.writer.write_u32::<BE>(val as u32)
        } else if val < 1 << 60 {
            self.writer.write_u64::<BE>((val as u64) | 7 << 60)
        } else {
            self.writer.write_u8(8 << 4)?;
            self.writer.write_u64::<BE>(val)
        }.map_err(From::from)
    }

    /// Encode an `i64` into a variable number of bytes.
    ///
    /// The variable-length encoding scheme uses between 1 and 9 bytes depending on the value.
    /// Smaller magnitude (closer to 0) `i64`s will encode to fewer bytes.
    ///
    /// ##### Encoding
    ///
    /// The encoding uses the first bit to encode the sign: `0` for negative values and `1` for
    /// positive values. The following 4 bits store the number of trailing bytes, between 0 and 8.
    /// Subsequent bits are the absolute value of the input value in big-endian format with leading
    /// 0 bytes removed. If the original value was negative, than 1 is subtracted from the absolute
    /// value before encoding. Finally, if the value is negative, all bits except the sign bit are
    /// flipped (1s become 0s and 0s become 1s).
    ///
    /// ##### Encoded Size
    ///
    /// <table>
    ///     <tr>
    ///         <th>negative range</th>
    ///         <th>positive range</th>
    ///         <th>size (bytes)</th>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>3</sup>, 0)</td>
    ///         <td>[0, 2<sup>3</sup>)</td>
    ///         <td>1</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>11</sup>, -2<sup>3</sup>)</td>
    ///         <td>[2<sup>3</sup>, 2<sup>11</sup>)</td>
    ///         <td>2</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>19</sup>, -2<sup>11</sup>)</td>
    ///         <td>[2<sup>11</sup>, 2<sup>19</sup>)</td>
    ///         <td>3</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>27</sup>, -2<sup>19</sup>)</td>
    ///         <td>[2<sup>19</sup>, 2<sup>27</sup>)</td>
    ///         <td>4</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>35</sup>, -2<sup>27</sup>)</td>
    ///         <td>[2<sup>27</sup>, 2<sup>35</sup>)</td>
    ///         <td>5</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>43</sup>, -2<sup>35</sup>)</td>
    ///         <td>[2<sup>35</sup>, 2<sup>43</sup>)</td>
    ///         <td>6</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>51</sup>, -2<sup>43</sup>)</td>
    ///         <td>[2<sup>43</sup>, 2<sup>51</sup>)</td>
    ///         <td>7</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>59</sup>, -2<sup>51</sup>)</td>
    ///         <td>[2<sup>51</sup>, 2<sup>59</sup>)</td>
    ///         <td>8</td>
    ///     </tr>
    ///     <tr>
    ///         <td>[-2<sup>63</sup>, -2<sup>59</sup>)</td>
    ///         <td>[2<sup>59</sup>, 2<sup>63</sup>)</td>
    ///         <td>9</td>
    ///     </tr>
    /// </table>
    pub fn serialize_var_i64(&mut self, v: i64) -> Result<()> {
        // The mask is 0 for positive input and u64::MAX for negative input
        let mask = (v >> 63) as u64;
        let val = v.abs() as u64 - (1 & mask);
        if val < 1 << 3 {
            let masked = (val | (0x10 << 3)) ^ mask;
            self.writer.write_u8(masked as u8)
        } else if val < 1 << 11 {
            let masked = (val | (0x11 << 11)) ^ mask;
            self.writer.write_u16::<BE>(masked as u16)
        } else if val < 1 << 19 {
            let masked = (val | (0x12 << 19)) ^ mask;
            self.writer.write_u8((masked >> 16) as u8)?;
            self.writer.write_u16::<BE>(masked as u16)
        } else if val < 1 << 27 {
            let masked = (val | (0x13 << 27)) ^ mask;
            self.writer.write_u32::<BE>(masked as u32)
        } else if val < 1 << 35 {
            let masked = (val | (0x14 << 35)) ^ mask;
            self.writer.write_u8((masked >> 32) as u8)?;
            self.writer.write_u32::<BE>(masked as u32)
        } else if val < 1 << 43 {
            let masked = (val | (0x15 << 43)) ^ mask;
            self.writer.write_u16::<BE>((masked >> 32) as u16)?;
            self.writer.write_u32::<BE>(masked as u32)
        } else if val < 1 << 51 {
            let masked = (val | (0x16 << 51)) ^ mask;
            self.writer.write_u8((masked >> 48) as u8)?;
            self.writer.write_u16::<BE>((masked >> 32) as u16)?;
            self.writer.write_u32::<BE>(masked as u32)
        } else if val < 1 << 59 {
            let masked = (val | (0x17 << 59)) ^ mask;
            self.writer.write_u64::<BE>(masked as u64)
        } else {
            self.writer.write_u8((0x18 << 3) ^ mask as u8)?;
            self.writer.write_u64::<BE>(val ^ mask)
        }.map_err(From::from)
    }
}

impl<'a, W> serde::Serializer for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;
    type SerializeSeq = Self;
    type SerializeTuple = Self;
    type SerializeTupleStruct = Self;
    type SerializeTupleVariant = Self;
    type SerializeMap = Self;
    type SerializeStruct = Self;
    type SerializeStructVariant = Self;

    fn serialize_bool(self, v: bool) -> Result<()> {
        let b = if v { 1 } else { 0 };
        self.writer.write_u8(b)?;
        Ok(())
    }

    fn serialize_i8(self, v: i8) -> Result<()> {
        self.writer.write_i8(v ^ i8::MIN)?;
        Ok(())
    }

    fn serialize_i16(self, v: i16) -> Result<()> {
        self.writer.write_i16::<BE>(v ^ i16::MIN)?;
        Ok(())
    }

    fn serialize_i32(self, v: i32) -> Result<()> {
        self.writer.write_i32::<BE>(v ^ i32::MIN)?;
        Ok(())
    }

    fn serialize_i64(self, v: i64) -> Result<()> {
        self.writer.write_i64::<BE>(v ^ i64::MIN)?;
        Ok(())
    }

    fn serialize_u8(self, v: u8) -> Result<()> {
        self.writer.write_u8(v)?;
        Ok(())
    }

    fn serialize_u16(self, v: u16) -> Result<()> {
        self.writer.write_u16::<BE>(v)?;
        Ok(())
    }

    fn serialize_u32(self, v: u32) -> Result<()> {
        self.writer.write_u32::<BE>(v)?;
        Ok(())
    }

    fn serialize_u64(self, v: u64) -> Result<()> {
        self.writer.write_u64::<BE>(v)?;
        Ok(())
    }

    /// Encode an `f32` into sortable bytes.
    ///
    /// `NaN`s will sort greater than positive infinity. -0.0 will sort directly before +0.0.
    ///
    /// See [Hacker's Delight 2nd Edition](http://www.hackersdelight.org/) Section 17-3.
    fn serialize_f32(self, v: f32) -> Result<()> {
        let val = unsafe { transmute::<f32, i32>(v) };
        let t = (val >> 31) | i32::MIN;
        self.writer.write_i32::<BE>(val ^ t)?;
        Ok(())
    }

    /// Encode an `f64` into sortable bytes.
    ///
    /// `NaN`s will sort greater than positive infinity. -0.0 will sort directly before +0.0.
    ///
    /// See [Hacker's Delight 2nd Edition](http://www.hackersdelight.org/) Section 17-3.
    fn serialize_f64(self, v: f64) -> Result<()> {
        let val = unsafe { transmute::<f64, i64>(v) };
        let t = (val >> 63) | i64::MIN;
        self.writer.write_i64::<BE>(val ^ t)?;
        Ok(())
    }

    fn serialize_char(self, v: char) -> Result<()> {
        let mut buf = [0u8; 4];
        let n = v.encode_utf8(&mut buf).len();
        self.writer.write_all(&buf[..n])?;
        Ok(())
    }

    fn serialize_str(self, v: &str) -> Result<()> {
        self.writer.write_all(v.as_bytes())?;
        self.writer.write_u8(0u8)?;
        Ok(())
    }

    fn serialize_bytes(self, v: &[u8]) -> Result<()> {
        self.writer.write_all(v)?;
        Ok(())
    }

    fn serialize_none(self) -> Result<()> {
        self.writer.write_u8(0)?;
        Ok(())
    }

    fn serialize_some<T>(self, v: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        self.writer.write_u8(1)?;
        v.serialize(self)
    }

    fn serialize_unit(self) -> Result<()> {
        self.writer.write_all(&[])?;
        Ok(())
    }

    fn serialize_unit_struct(self, _name: &'static str) -> Result<()> {
        self.serialize_unit()
    }

    fn serialize_unit_variant(
        self,
        _name: &'static str,
        variant_index: u32,
        _variant: &'static str,
    ) -> Result<()> {
        self.serialize_u32(variant_index)
    }

    fn serialize_newtype_struct<T>(self, _name: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(self)
    }

    fn serialize_newtype_variant<T>(
        self,
        _name: &'static str,
        variant_index: u32,
        _variant: &'static str,
        value: &T,
    ) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        self.writer.write_u32::<BE>(variant_index)?;
        value.serialize(self)
    }

    fn serialize_seq(self, _len: Option<usize>) -> Result<Self::SerializeSeq> {
        Ok(self)
    }

    fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple> {
        Ok(self)
    }

    fn serialize_tuple_struct(
        self,
        _name: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleStruct> {
        Ok(self)
    }

    fn serialize_tuple_variant(
        self,
        _name: &'static str,
        variant_index: u32,
        _variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleVariant> {
        self.writer.write_u32::<BE>(variant_index)?;
        Ok(self)
    }

    fn serialize_map(self, _len: Option<usize>) -> Result<Self::SerializeStruct> {
        Ok(self)
    }

    fn serialize_struct(self, _name: &'static str, _len: usize) -> Result<Self::SerializeStruct> {
        Ok(self)
    }

    fn serialize_struct_variant(
        self,
        _name: &'static str,
        variant_index: u32,
        _variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeStructVariant> {
        self.writer.write_u32::<BE>(variant_index)?;
        Ok(self)
    }
}

// Compound Implementations.

impl<'a, W> serde::ser::SerializeSeq for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> serde::ser::SerializeTuple for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> serde::ser::SerializeTupleStruct for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> serde::ser::SerializeTupleVariant for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> serde::ser::SerializeMap for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_key<T>(&mut self, key: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        key.serialize(&mut **self)
    }

    fn serialize_value<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> serde::ser::SerializeStruct for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, _key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> serde::ser::SerializeStructVariant for &'a mut Serializer<W>
where
    W: Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, _key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

// Error implementation.

impl From<io::Error> for Error {
    fn from(error: io::Error) -> Error {
        Error::Io(error)
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.to_string())
    }
}

impl StdError for Error {
    fn description(&self) -> &str {
        match *self {
            Error::Message(ref msg) => msg,
            Error::Io(ref err) => err.description(),
        }
    }

    fn cause(&self) -> Option<&StdError> {
        match *self {
            Error::Message(ref _msg) => None,
            Error::Io(ref err) => err.source(),
        }
    }
}

impl serde::ser::Error for Error {
    fn custom<T: fmt::Display>(msg: T) -> Self {
        Error::Message(msg.to_string())
    }
}