1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
//! Driver for the STM32 bxCAN peripheral.
//!
//! This crate provides a reusable driver for the bxCAN peripheral found in many low- to middle-end
//! STM32 microcontrollers. HALs for compatible chips can reexport this crate and implement its
//! traits to easily expose a featureful CAN driver.
//!
//! # Features
//!
//! - Supports both single- and dual-peripheral configurations (where one bxCAN instance manages the
//!   filters of a secondary instance).
//! - Handles standard and extended frames, and data and remote frames.
//! - Support for interrupts emitted by the bxCAN peripheral.
//! - Transmission respects CAN IDs and protects against priority inversion (a lower-priority frame
//!   may be dequeued when enqueueing a higher-priority one).
//! - Optionally implements the [`embedded-can`] traits for interoperability.
//!
//! # Limitations
//!
//! - Currently, only RX FIFO 0 is supported, and FIFO 1 will not be used.
//! - Support for querying error states and handling error interrupts is incomplete.
//!
//! # Cargo Features
//!
//! | Feature | Description |
//! |---------|-------------|
//! | `unstable-defmt` | Implements [`defmt`]'s `Format` trait for the types in this crate.[^1] |
//! | `embedded-can-03` | Implements the [`embedded-can`] 0.3 traits. |
//!
//! [^1]: The specific version of defmt is unspecified and may be updated in a patch release.
//!
//! [`embedded-can`]: https://docs.rs/embedded-can
//! [`defmt`]: https://docs.rs/defmt

#![doc(html_root_url = "https://docs.rs/bxcan/0.6.0")]
// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
#![doc(test(attr(deny(unused_imports, unused_must_use))))]
#![no_std]
#![allow(clippy::unnecessary_operation)] // lint is bugged

#[cfg(feature = "embedded-can-03")]
mod embedded_can;
pub mod filter;
mod frame;
mod id;
mod interrupt;
mod readme;

#[allow(clippy::all)] // generated code
mod pac;

pub use id::{ExtendedId, Id, StandardId};

pub use crate::frame::{Data, Frame, FramePriority};
pub use crate::interrupt::{Interrupt, Interrupts};
pub use crate::pac::can::RegisterBlock;

use crate::filter::MasterFilters;
use core::cmp::{Ord, Ordering};
use core::convert::{Infallible, TryInto};
use core::marker::PhantomData;
use core::mem;
use core::ptr::NonNull;

use self::pac::generic::*; // To make the PAC extraction build

/// A bxCAN peripheral instance.
///
/// This trait is meant to be implemented for a HAL-specific type that represent ownership of
/// the CAN peripheral (and any pins required by it, although that is entirely up to the HAL).
///
/// # Safety
///
/// It is only safe to implement this trait, when:
///
/// * The implementing type has ownership of the peripheral, preventing any other accesses to the
///   register block.
/// * `REGISTERS` is a pointer to that peripheral's register block and can be safely accessed for as
///   long as ownership or a borrow of the implementing type is present.
pub unsafe trait Instance {
    /// Pointer to the instance's register block.
    const REGISTERS: *mut RegisterBlock;
}

/// A bxCAN instance that owns filter banks.
///
/// In master-slave-instance setups, only the master instance owns the filter banks, and needs to
/// split some of them off for use by the slave instance. In that case, the master instance should
/// implement [`FilterOwner`] and [`MasterInstance`], while the slave instance should only implement
/// [`Instance`].
///
/// In single-instance configurations, the instance owns all filter banks and they can not be split
/// off. In that case, the instance should implement [`Instance`] and [`FilterOwner`].
///
/// # Safety
///
/// This trait must only be implemented if the instance does, in fact, own its associated filter
/// banks, and `NUM_FILTER_BANKS` must be correct.
pub unsafe trait FilterOwner: Instance {
    /// The total number of filter banks available to the instance.
    ///
    /// This is usually either 14 or 28, and should be specified in the chip's reference manual or
    /// datasheet.
    const NUM_FILTER_BANKS: u8;
}

/// A bxCAN master instance that shares filter banks with a slave instance.
///
/// In master-slave-instance setups, this trait should be implemented for the master instance.
///
/// # Safety
///
/// This trait must only be implemented when there is actually an associated slave instance.
pub unsafe trait MasterInstance: FilterOwner {}

// TODO: what to do with these?
/*
#[derive(Debug, Copy, Clone, Eq, PartialEq, Format)]
pub enum Error {
    Stuff,
    Form,
    Acknowledgement,
    BitRecessive,
    BitDominant,
    Crc,
    Software,
}*/

/// Identifier of a CAN message.
///
/// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a
/// extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// The `Ord` trait can be used to determine the frame’s priority this ID
/// belongs to.
/// Lower identifier values have a higher priority. Additionally standard frames
/// have a higher priority than extended frames and data frames have a higher
/// priority than remote frames.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
struct IdReg(u32);

impl IdReg {
    const STANDARD_SHIFT: u32 = 21;

    const EXTENDED_SHIFT: u32 = 3;

    const IDE_MASK: u32 = 0x0000_0004;

    const RTR_MASK: u32 = 0x0000_0002;

    /// Creates a new standard identifier (11bit, Range: 0..0x7FF)
    ///
    /// Panics for IDs outside the allowed range.
    fn new_standard(id: StandardId) -> Self {
        Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT)
    }

    /// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF).
    ///
    /// Panics for IDs outside the allowed range.
    fn new_extended(id: ExtendedId) -> IdReg {
        Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK)
    }

    fn from_register(reg: u32) -> IdReg {
        Self(reg & 0xFFFF_FFFE)
    }

    /// Sets the remote transmission (RTR) flag. This marks the identifier as
    /// being part of a remote frame.
    #[must_use = "returns a new IdReg without modifying `self`"]
    fn with_rtr(self, rtr: bool) -> IdReg {
        if rtr {
            Self(self.0 | Self::RTR_MASK)
        } else {
            Self(self.0 & !Self::RTR_MASK)
        }
    }

    /// Returns the identifier.
    fn to_id(self) -> Id {
        if self.is_extended() {
            Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) })
        } else {
            Id::Standard(unsafe {
                StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16)
            })
        }
    }

    /// Returns `true` if the identifier is an extended identifier.
    fn is_extended(self) -> bool {
        self.0 & Self::IDE_MASK != 0
    }

    /// Returns `true` if the identifier is a standard identifier.
    fn is_standard(self) -> bool {
        !self.is_extended()
    }

    /// Returns `true` if the identifer is part of a remote frame (RTR bit set).
    fn rtr(self) -> bool {
        self.0 & Self::RTR_MASK != 0
    }
}

/// `IdReg` is ordered by priority.
impl Ord for IdReg {
    fn cmp(&self, other: &Self) -> Ordering {
        // When the IDs match, data frames have priority over remote frames.
        let rtr = self.rtr().cmp(&other.rtr()).reverse();

        let id_a = self.to_id();
        let id_b = other.to_id();
        match (id_a, id_b) {
            (Id::Standard(a), Id::Standard(b)) => {
                // Lower IDs have priority over higher IDs.
                a.as_raw().cmp(&b.as_raw()).reverse().then(rtr)
            }
            (Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr),
            (Id::Standard(a), Id::Extended(b)) => {
                // Standard frames have priority over extended frames if their Base IDs match.
                a.as_raw()
                    .cmp(&b.standard_id().as_raw())
                    .reverse()
                    .then(Ordering::Greater)
            }
            (Id::Extended(a), Id::Standard(b)) => a
                .standard_id()
                .as_raw()
                .cmp(&b.as_raw())
                .reverse()
                .then(Ordering::Less),
        }
    }
}

impl PartialOrd for IdReg {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// Configuration proxy returned by [`Can::modify_config`].
#[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"]
pub struct CanConfig<'a, I: Instance> {
    can: &'a mut Can<I>,
}

impl<I: Instance> CanConfig<'_, I> {
    /// Configures the bit timings.
    ///
    /// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
    /// parameters as follows:
    ///
    /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
    ///   This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
    /// - *Sample Point*: Should normally be left at the default value of 87.5%.
    /// - *SJW*: Should normally be left at the default value of 1.
    ///
    /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
    /// parameter to this method.
    pub fn set_bit_timing(self, btr: u32) -> Self {
        let can = self.can.registers();
        can.btr.modify(|r, w| unsafe {
            let mode_bits = r.bits() & 0xC000_0000;
            w.bits(mode_bits | btr)
        });
        self
    }

    /// Enables or disables loopback mode: Internally connects the TX and RX
    /// signals together.
    pub fn set_loopback(self, enabled: bool) -> Self {
        let can = self.can.registers();
        can.btr.modify(|_, w| w.lbkm().bit(enabled));
        self
    }

    /// Enables or disables silent mode: Disconnects the TX signal from the pin.
    pub fn set_silent(self, enabled: bool) -> Self {
        let can = self.can.registers();
        can.btr.modify(|_, w| w.silm().bit(enabled));
        self
    }

    /// Enables or disables automatic retransmission of messages.
    ///
    /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
    /// until it can be sent. Otherwise, it will try only once to send each frame.
    ///
    /// Automatic retransmission is enabled by default.
    pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
        let can = self.can.registers();
        can.mcr.modify(|_, w| w.nart().bit(!enabled));
        self
    }

    /// Leaves initialization mode and enables the peripheral.
    ///
    /// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
    /// on the bus.
    ///
    /// If you want to finish configuration without enabling the peripheral, you can call
    /// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead.
    pub fn enable(mut self) {
        self.leave_init_mode();

        match nb::block!(self.can.enable_non_blocking()) {
            Ok(()) => {}
            Err(void) => match void {},
        }

        // Don't run the destructor.
        mem::forget(self);
    }

    /// Leaves initialization mode, but keeps the peripheral in sleep mode.
    ///
    /// Before the [`Can`] instance can be used, you have to enable it by calling
    /// [`Can::enable_non_blocking`].
    pub fn leave_disabled(mut self) {
        self.leave_init_mode();
    }

    /// Leaves initialization mode, enters sleep mode.
    fn leave_init_mode(&mut self) {
        let can = self.can.registers();
        can.mcr
            .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
        loop {
            let msr = can.msr.read();
            if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
                break;
            }
        }
    }
}

impl<I: Instance> Drop for CanConfig<'_, I> {
    #[inline]
    fn drop(&mut self) {
        self.leave_init_mode();
    }
}

/// Builder returned by [`Can::builder`].
#[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"]
pub struct CanBuilder<I: Instance> {
    can: Can<I>,
}

impl<I: Instance> CanBuilder<I> {
    /// Configures the bit timings.
    ///
    /// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
    /// parameters as follows:
    ///
    /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
    ///   This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
    /// - *Sample Point*: Should normally be left at the default value of 87.5%.
    /// - *SJW*: Should normally be left at the default value of 1.
    ///
    /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
    /// parameter to this method.
    pub fn set_bit_timing(self, btr: u32) -> Self {
        let can = self.can.registers();
        can.btr.modify(|r, w| unsafe {
            let mode_bits = r.bits() & 0xC000_0000;
            w.bits(mode_bits | btr)
        });
        self
    }

    /// Enables or disables loopback mode: Internally connects the TX and RX
    /// signals together.
    pub fn set_loopback(self, enabled: bool) -> Self {
        let can = self.can.registers();
        can.btr.modify(|_, w| w.lbkm().bit(enabled));
        self
    }

    /// Enables or disables silent mode: Disconnects the TX signal from the pin.
    pub fn set_silent(self, enabled: bool) -> Self {
        let can = self.can.registers();
        can.btr.modify(|_, w| w.silm().bit(enabled));
        self
    }

    /// Enables or disables automatic retransmission of messages.
    ///
    /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
    /// until it can be sent. Otherwise, it will try only once to send each frame.
    ///
    /// Automatic retransmission is enabled by default.
    pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
        let can = self.can.registers();
        can.mcr.modify(|_, w| w.nart().bit(!enabled));
        self
    }

    /// Leaves initialization mode and enables the peripheral.
    ///
    /// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
    /// on the bus.
    ///
    /// If you want to finish configuration without enabling the peripheral, you can call
    /// [`CanBuilder::leave_disabled`] instead.
    pub fn enable(mut self) -> Can<I> {
        self.leave_init_mode();

        match nb::block!(self.can.enable_non_blocking()) {
            Ok(()) => self.can,
            Err(void) => match void {},
        }
    }

    /// Returns the [`Can`] interface without enabling it.
    ///
    /// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling
    /// it.
    ///
    /// Before the [`Can`] instance can be used, you have to enable it by calling
    /// [`Can::enable_non_blocking`].
    pub fn leave_disabled(mut self) -> Can<I> {
        self.leave_init_mode();
        self.can
    }

    /// Leaves initialization mode, enters sleep mode.
    fn leave_init_mode(&mut self) {
        let can = self.can.registers();
        can.mcr
            .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
        loop {
            let msr = can.msr.read();
            if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
                break;
            }
        }
    }
}

/// Interface to a bxCAN peripheral.
pub struct Can<I: Instance> {
    instance: I,
}

impl<I> Can<I>
where
    I: Instance,
{
    /// Creates a [`CanBuilder`] for constructing a CAN interface.
    pub fn builder(instance: I) -> CanBuilder<I> {
        CanBuilder {
            can: Can { instance },
        }
    }

    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    /// Returns a reference to the peripheral instance.
    ///
    /// This allows accessing HAL-specific data stored in the instance type.
    pub fn instance(&mut self) -> &mut I {
        &mut self.instance
    }

    /// Disables the CAN interface and returns back the raw peripheral it was created from.
    ///
    /// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
    /// enter sleep mode.
    pub fn free(self) -> I {
        self.registers().mcr.write(|w| w.reset().set_bit());
        self.instance
    }

    /// Configure bit timings and silent/loop-back mode.
    ///
    /// Calling this method will enter initialization mode.
    pub fn modify_config(&mut self) -> CanConfig<'_, I> {
        let can = self.registers();

        // Enter init mode.
        can.mcr
            .modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
        loop {
            let msr = can.msr.read();
            if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
                break;
            }
        }

        CanConfig { can: self }
    }

    /// Configures the automatic wake-up feature.
    ///
    /// This is turned off by default.
    ///
    /// When turned on, an incoming frame will cause the peripheral to wake up from sleep and
    /// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming
    /// frame.
    pub fn set_automatic_wakeup(&mut self, enabled: bool) {
        let can = self.registers();
        can.mcr.modify(|_, w| w.awum().bit(enabled));
    }

    /// Leaves initialization mode and enables the peripheral (non-blocking version).
    ///
    /// Usually, it is recommended to call [`CanConfig::enable`] instead. This method is only needed
    /// if you want non-blocking initialization.
    ///
    /// If this returns [`WouldBlock`][nb::Error::WouldBlock], the peripheral will enable itself
    /// in the background. The peripheral is enabled and ready to use when this method returns
    /// successfully.
    pub fn enable_non_blocking(&mut self) -> nb::Result<(), Infallible> {
        let can = self.registers();
        let msr = can.msr.read();
        if msr.slak().bit_is_set() {
            can.mcr
                .modify(|_, w| w.abom().set_bit().sleep().clear_bit());
            Err(nb::Error::WouldBlock)
        } else {
            Ok(())
        }
    }

    /// Puts the peripheral in a sleep mode to save power.
    ///
    /// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled.
    pub fn sleep(&mut self) {
        let can = self.registers();
        can.mcr
            .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
        loop {
            let msr = can.msr.read();
            if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
                break;
            }
        }
    }

    /// Wakes up from sleep mode.
    ///
    /// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN
    /// frame will cause that interrupt.
    pub fn wakeup(&mut self) {
        let can = self.registers();
        can.mcr
            .modify(|_, w| w.sleep().clear_bit().inrq().clear_bit());
        loop {
            let msr = can.msr.read();
            if msr.slak().bit_is_clear() && msr.inak().bit_is_clear() {
                break;
            }
        }
    }

    /// Starts listening for a CAN interrupt.
    pub fn enable_interrupt(&mut self, interrupt: Interrupt) {
        self.enable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
    }

    /// Starts listening for a set of CAN interrupts.
    pub fn enable_interrupts(&mut self, interrupts: Interrupts) {
        self.registers()
            .ier
            .modify(|r, w| unsafe { w.bits(r.bits() | interrupts.bits()) })
    }

    /// Stops listening for a CAN interrupt.
    pub fn disable_interrupt(&mut self, interrupt: Interrupt) {
        self.disable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
    }

    /// Stops listening for a set of CAN interrupts.
    pub fn disable_interrupts(&mut self, interrupts: Interrupts) {
        self.registers()
            .ier
            .modify(|r, w| unsafe { w.bits(r.bits() & !interrupts.bits()) })
    }

    /// Clears the pending flag of [`Interrupt::Sleep`].
    pub fn clear_sleep_interrupt(&self) {
        let can = self.registers();
        // Read-only register with write-1-to-clear, so `&self` is sufficient.
        can.msr.write(|w| w.slaki().set_bit());
    }

    /// Clears the pending flag of [`Interrupt::Wakeup`].
    pub fn clear_wakeup_interrupt(&self) {
        let can = self.registers();
        // Read-only register with write-1-to-clear, so `&self` is sufficient.
        can.msr.write(|w| w.wkui().set_bit());
    }

    /// Clears the "Request Completed" (RQCP) flag of a transmit mailbox.
    ///
    /// Returns the [`Mailbox`] whose flag was cleared. If no mailbox has the flag set, returns
    /// `None`.
    ///
    /// Once this function returns `None`, a pending [`Interrupt::TransmitMailboxEmpty`] is
    /// considered acknowledged.
    pub fn clear_request_completed_flag(&mut self) -> Option<Mailbox> {
        let can = self.registers();
        let tsr = can.tsr.read();
        if tsr.rqcp0().bit_is_set() {
            can.tsr.modify(|_, w| w.rqcp0().set_bit());
            Some(Mailbox::Mailbox0)
        } else if tsr.rqcp1().bit_is_set() {
            can.tsr.modify(|_, w| w.rqcp1().set_bit());
            Some(Mailbox::Mailbox1)
        } else if tsr.rqcp2().bit_is_set() {
            can.tsr.modify(|_, w| w.rqcp2().set_bit());
            Some(Mailbox::Mailbox2)
        } else {
            None
        }
    }

    /// Clears a pending TX interrupt ([`Interrupt::TransmitMailboxEmpty`]).
    ///
    /// This does not return the mailboxes that have finished tranmission. If you need that
    /// information, call [`Can::clear_request_completed_flag`] instead.
    pub fn clear_tx_interrupt(&mut self) {
        while self.clear_request_completed_flag().is_some() {}
    }

    /// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
    ///
    /// Frames are transmitted to the bus based on their priority (identifier).
    /// Transmit order is preserved for frames with identical identifiers.
    /// If all transmit mailboxes are full, a higher priority frame replaces the
    /// lowest priority frame, which is returned as `Ok(Some(frame))`.
    pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
        // Safety: We have a `&mut self` and have unique access to the peripheral.
        unsafe { Tx::<I>::conjure().transmit(frame) }
    }

    /// Returns `true` if no frame is pending for transmission.
    pub fn is_transmitter_idle(&self) -> bool {
        // Safety: Read-only operation.
        unsafe { Tx::<I>::conjure().is_idle() }
    }

    /// Attempts to abort the sending of a frame that is pending in a mailbox.
    ///
    /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
    /// aborted, this function has no effect and returns `false`.
    ///
    /// If there is a frame in the provided mailbox, and it is canceled successfully, this function
    /// returns `true`.
    pub fn abort(&mut self, mailbox: Mailbox) -> bool {
        // Safety: We have a `&mut self` and have unique access to the peripheral.
        unsafe { Tx::<I>::conjure().abort(mailbox) }
    }

    /// Returns a received frame if available.
    ///
    /// Returns `Err` when a frame was lost due to buffer overrun.
    pub fn receive(&mut self) -> nb::Result<Frame, ()> {
        // Safety: We have a `&mut self` and have unique access to the peripheral.
        unsafe { Rx::<I>::conjure().receive() }
    }

    /// Splits this `Can` instance into transmitting and receiving halves, by reference.
    pub fn split_by_ref(&mut self) -> (&mut Tx<I>, &mut Rx<I>) {
        // Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
        let tx = unsafe { Tx::conjure_by_ref() };
        let rx = unsafe { Rx::conjure_by_ref() };
        (tx, rx)
    }

    /// Consumes this `Can` instance and splits it into transmitting and receiving halves.
    pub fn split(self) -> (Tx<I>, Rx<I>) {
        unsafe { (Tx::conjure(), Rx::conjure()) }
    }
}

impl<I: FilterOwner> Can<I> {
    /// Accesses the filter banks owned by this CAN peripheral.
    ///
    /// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
    /// peripheral instead.
    pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
        unsafe { MasterFilters::new() }
    }
}

/// Interface to the CAN transmitter part.
pub struct Tx<I> {
    _can: PhantomData<I>,
}

#[inline]
const fn ok_mask(idx: usize) -> u32 {
    0x02 << (8 * idx)
}

#[inline]
const fn abort_mask(idx: usize) -> u32 {
    0x80 << (8 * idx)
}

impl<I> Tx<I>
where
    I: Instance,
{
    unsafe fn conjure() -> Self {
        Self { _can: PhantomData }
    }

    /// Creates a `&mut Self` out of thin air.
    ///
    /// This is only safe if it is the only way to access a `Tx<I>`.
    unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
        // Cause out of bounds access when `Self` is not zero-sized.
        [()][core::mem::size_of::<Self>()];

        // Any aligned pointer is valid for ZSTs.
        &mut *NonNull::dangling().as_ptr()
    }

    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    /// Puts a CAN frame in a transmit mailbox for transmission on the bus.
    ///
    /// Frames are transmitted to the bus based on their priority (identifier). Transmit order is
    /// preserved for frames with identical identifiers.
    ///
    /// If all transmit mailboxes are full, a higher priority frame can replace a lower-priority
    /// frame, which is returned in the [`TransmitStatus`].
    pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
        let can = self.registers();

        // Get the index of the next free mailbox or the one with the lowest priority.
        let tsr = can.tsr.read();
        let idx = tsr.code().bits() as usize;

        let frame_is_pending =
            tsr.tme0().bit_is_clear() || tsr.tme1().bit_is_clear() || tsr.tme2().bit_is_clear();
        let pending_frame = if frame_is_pending {
            // High priority frames are transmitted first by the mailbox system.
            // Frames with identical identifier shall be transmitted in FIFO order.
            // The controller schedules pending frames of same priority based on the
            // mailbox index instead. As a workaround check all pending mailboxes
            // and only accept higher priority frames.
            self.check_priority(0, frame.id)?;
            self.check_priority(1, frame.id)?;
            self.check_priority(2, frame.id)?;

            let all_frames_are_pending =
                tsr.tme0().bit_is_clear() && tsr.tme1().bit_is_clear() && tsr.tme2().bit_is_clear();
            if all_frames_are_pending {
                // No free mailbox is available. This can only happen when three frames with
                // ascending priority (descending IDs) were requested for transmission and all
                // of them are blocked by bus traffic with even higher priority.
                // To prevent a priority inversion abort and replace the lowest priority frame.
                self.read_pending_mailbox(idx)
            } else {
                // There was a free mailbox.
                None
            }
        } else {
            // All mailboxes are available: Send frame without performing any checks.
            None
        };

        self.write_mailbox(idx, frame);

        let mailbox = match idx {
            0 => Mailbox::Mailbox0,
            1 => Mailbox::Mailbox1,
            2 => Mailbox::Mailbox2,
            _ => unreachable!(),
        };
        Ok(TransmitStatus {
            dequeued_frame: pending_frame,
            mailbox,
        })
    }

    /// Returns `Ok` when the mailbox is free or if it contains pending frame with a
    /// lower priority (higher ID) than the identifier `id`.
    fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> {
        let can = self.registers();

        // Read the pending frame's id to check its priority.
        assert!(idx < 3);
        let tir = &can.tx[idx].tir.read();

        // Check the priority by comparing the identifiers. But first make sure the
        // frame has not finished the transmission (`TXRQ` == 0) in the meantime.
        if tir.txrq().bit_is_set() && id <= IdReg::from_register(tir.bits()) {
            // There's a mailbox whose priority is higher or equal
            // the priority of the new frame.
            return Err(nb::Error::WouldBlock);
        }

        Ok(())
    }

    fn write_mailbox(&mut self, idx: usize, frame: &Frame) {
        let can = self.registers();

        debug_assert!(idx < 3);
        let mb = unsafe { &can.tx.get_unchecked(idx) };

        mb.tdtr
            .write(|w| unsafe { w.dlc().bits(frame.dlc() as u8) });
        mb.tdlr.write(|w| unsafe {
            w.bits(u32::from_ne_bytes(
                frame.data.bytes[0..4].try_into().unwrap(),
            ))
        });
        mb.tdhr.write(|w| unsafe {
            w.bits(u32::from_ne_bytes(
                frame.data.bytes[4..8].try_into().unwrap(),
            ))
        });
        mb.tir
            .write(|w| unsafe { w.bits(frame.id.0).txrq().set_bit() });
    }

    fn read_pending_mailbox(&mut self, idx: usize) -> Option<Frame> {
        if self.abort_by_index(idx) {
            let can = self.registers();
            debug_assert!(idx < 3);
            let mb = unsafe { &can.tx.get_unchecked(idx) };

            // Read back the pending frame.
            let mut pending_frame = Frame {
                id: IdReg(mb.tir.read().bits()),
                data: Data::empty(),
            };
            pending_frame.data.bytes[0..4].copy_from_slice(&mb.tdlr.read().bits().to_ne_bytes());
            pending_frame.data.bytes[4..8].copy_from_slice(&mb.tdhr.read().bits().to_ne_bytes());
            pending_frame.data.len = mb.tdtr.read().dlc().bits();

            Some(pending_frame)
        } else {
            // Abort request failed because the frame was already sent (or being sent) on
            // the bus. All mailboxes are now free. This can happen for small prescaler
            // values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
            // has preempted the execution.
            None
        }
    }

    /// Tries to abort a pending frame. Returns `true` when aborted.
    fn abort_by_index(&mut self, idx: usize) -> bool {
        let can = self.registers();

        can.tsr.write(|w| unsafe { w.bits(abort_mask(idx)) });

        // Wait for the abort request to be finished.
        loop {
            let tsr = can.tsr.read().bits();
            if tsr & abort_mask(idx) == 0 {
                break tsr & ok_mask(idx) == 0;
            }
        }
    }

    /// Attempts to abort the sending of a frame that is pending in a mailbox.
    ///
    /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
    /// aborted, this function has no effect and returns `false`.
    ///
    /// If there is a frame in the provided mailbox, and it is canceled successfully, this function
    /// returns `true`.
    pub fn abort(&mut self, mailbox: Mailbox) -> bool {
        // If the mailbox is empty, the value of TXOKx depends on what happened with the previous
        // frame in that mailbox. Only call abort_by_index() if the mailbox is not empty.
        let tsr = self.registers().tsr.read();
        let mailbox_empty = match mailbox {
            Mailbox::Mailbox0 => tsr.tme0().bit_is_set(),
            Mailbox::Mailbox1 => tsr.tme1().bit_is_set(),
            Mailbox::Mailbox2 => tsr.tme2().bit_is_set(),
        };
        if mailbox_empty {
            false
        } else {
            self.abort_by_index(mailbox as usize)
        }
    }

    /// Returns `true` if no frame is pending for transmission.
    pub fn is_idle(&self) -> bool {
        let can = self.registers();
        let tsr = can.tsr.read();
        tsr.tme0().bit_is_set() && tsr.tme1().bit_is_set() && tsr.tme2().bit_is_set()
    }

    /// Clears the request complete flag for all mailboxes.
    pub fn clear_interrupt_flags(&mut self) {
        let can = self.registers();
        can.tsr
            .write(|w| w.rqcp2().set_bit().rqcp1().set_bit().rqcp0().set_bit());
    }
}

/// Interface to the CAN receiver part.
pub struct Rx<I> {
    _can: PhantomData<I>,
}

impl<I> Rx<I>
where
    I: Instance,
{
    unsafe fn conjure() -> Self {
        Self { _can: PhantomData }
    }

    /// Creates a `&mut Self` out of thin air.
    ///
    /// This is only safe if it is the only way to access an `Rx<I>`.
    unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
        // Cause out of bounds access when `Self` is not zero-sized.
        [()][core::mem::size_of::<Self>()];

        // Any aligned pointer is valid for ZSTs.
        &mut *NonNull::dangling().as_ptr()
    }

    /// Returns a received frame if available.
    ///
    /// Returns `Err` when a frame was lost due to buffer overrun.
    pub fn receive(&mut self) -> nb::Result<Frame, ()> {
        match self.receive_fifo(0) {
            Err(nb::Error::WouldBlock) => self.receive_fifo(1),
            result => result,
        }
    }

    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    fn receive_fifo(&mut self, fifo_nr: usize) -> nb::Result<Frame, ()> {
        let can = self.registers();

        assert!(fifo_nr < 2);
        let rfr = &can.rfr[fifo_nr];
        let rx = &can.rx[fifo_nr];

        // Check if a frame is available in the mailbox.
        let rfr_read = rfr.read();
        if rfr_read.fmp().bits() == 0 {
            return Err(nb::Error::WouldBlock);
        }

        // Check for RX FIFO overrun.
        if rfr_read.fovr().bit_is_set() {
            rfr.write(|w| w.fovr().set_bit());
            return Err(nb::Error::Other(()));
        }

        // Read the frame.
        let mut frame = Frame {
            id: IdReg(rx.rir.read().bits()),
            data: [0; 8].into(),
        };
        frame.data[0..4].copy_from_slice(&rx.rdlr.read().bits().to_ne_bytes());
        frame.data[4..8].copy_from_slice(&rx.rdhr.read().bits().to_ne_bytes());
        frame.data.len = rx.rdtr.read().dlc().bits();

        // Release the mailbox.
        rfr.write(|w| w.rfom().set_bit());

        Ok(frame)
    }
}

/// The three transmit mailboxes.
#[derive(Debug, Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
pub enum Mailbox {
    /// Transmit mailbox 0
    Mailbox0 = 0,
    /// Transmit mailbox 1
    Mailbox1 = 1,
    /// Transmit mailbox 2
    Mailbox2 = 2,
}

/// Contains information about a frame enqueued for transmission via [`Can::transmit`] or
/// [`Tx::transmit`].
pub struct TransmitStatus {
    dequeued_frame: Option<Frame>,
    mailbox: Mailbox,
}

impl TransmitStatus {
    /// Returns the lower-priority frame that was dequeued to make space for the new frame.
    #[inline]
    pub fn dequeued_frame(&self) -> Option<&Frame> {
        self.dequeued_frame.as_ref()
    }

    /// Returns the [`Mailbox`] the frame was enqueued in.
    #[inline]
    pub fn mailbox(&self) -> Mailbox {
        self.mailbox
    }
}