1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
//! Driver for the STM32 bxCAN peripheral.
//!
//! This crate provides a reusable driver for the bxCAN peripheral found in many low- to middle-end
//! STM32 microcontrollers. HALs for compatible chips can reexport this crate and implement its
//! traits to easily expose a featureful CAN driver.
//!
//! Caveats:
//! - Only RX FIFO 0 is supported, FIFO 1 will not be used.

#![doc(html_root_url = "https://docs.rs/bxcan/0.1.0")]
// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
#![doc(test(attr(deny(unused_imports, unused_must_use))))]
#![no_std]

pub mod filter;
mod frame;
mod id;
mod interrupt;
mod pac;
mod readme;

pub use crate::frame::{Data, Frame, FramePriority};
pub use crate::id::{ExtendedId, Id, StandardId};
pub use crate::interrupt::{Interrupt, Interrupts};
pub use crate::pac::can::RegisterBlock;

use crate::filter::MasterFilters;
use core::cmp::{Ord, Ordering};
use core::convert::{Infallible, TryInto};
use core::marker::PhantomData;
use core::ptr::NonNull;
use defmt::Format;

use self::pac::generic::*; // To make the PAC extraction build

/// A bxCAN peripheral instance.
///
/// This trait is meant to be implemented for a HAL-specific type that represent ownership of
/// the CAN peripheral (and any pins required by it, although that is entirely up to the HAL).
///
/// # Safety
///
/// It is only safe to implement this trait, when:
///
/// * The implementing type has ownership of the peripheral, preventing any other accesses to the
///   register block.
/// * `REGISTERS` is a pointer to that peripheral's register block and can be safely accessed for as
///   long as ownership or a borrow of the implementing type is present.
pub unsafe trait Instance {
    /// Pointer to the instance's register block.
    const REGISTERS: *mut RegisterBlock;
}

/// A bxCAN instance that owns filter banks.
///
/// In master-slave-instance setups, only the master instance owns the filter banks, and needs to
/// split some of them off for use by the slave instance. In that case, the master instance should
/// implement `FilterOwner` and `MasterInstance`, while the slave instance should only implement
/// `Instance`.
///
/// In single-instance configurations, the instance owns all filter banks and they can not be split
/// off. In that case, the instance should implement `Instance` and `FilterOwner`.
///
/// # Safety
///
/// This trait must only be implemented if the instance does, in fact, own its associated filter
/// banks, and `NUM_FILTER_BANKS` must be correct.
pub unsafe trait FilterOwner: Instance {
    /// The total number of filter banks available to the instance.
    ///
    /// This is usually either 14 or 28, and should be specified in the chip's reference manual or
    /// datasheet.
    const NUM_FILTER_BANKS: u8;
}

/// A bxCAN master instance that shares filter banks with a slave instance.
///
/// In master-slave-instance setups, this trait should be implemented for the master instance.
///
/// # Safety
///
/// This trait must only be implemented when `Self::Slave` is actually the associated slave instance
/// of `Self`.
pub unsafe trait MasterInstance: FilterOwner {
    type Slave: Instance;
}

// TODO: what to do with these?
/*
#[derive(Debug, Copy, Clone, Eq, PartialEq, Format)]
pub enum Error {
    Stuff,
    Form,
    Acknowledgement,
    BitRecessive,
    BitDominant,
    Crc,
    Software,
}*/

/// Identifier of a CAN message.
///
/// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a
/// extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// The `Ord` trait can be used to determine the frame’s priority this ID
/// belongs to.
/// Lower identifier values have a higher priority. Additionally standard frames
/// have a higher priority than extended frames and data frames have a higher
/// priority than remote frames.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Format)]
struct IdReg(u32);

impl IdReg {
    const STANDARD_SHIFT: u32 = 21;

    const EXTENDED_SHIFT: u32 = 3;

    const IDE_MASK: u32 = 0x0000_0004;

    const RTR_MASK: u32 = 0x0000_0002;

    /// Creates a new standard identifier (11bit, Range: 0..0x7FF)
    ///
    /// Panics for IDs outside the allowed range.
    fn new_standard(id: StandardId) -> Self {
        Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT)
    }

    /// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF).
    ///
    /// Panics for IDs outside the allowed range.
    fn new_extended(id: ExtendedId) -> IdReg {
        Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK)
    }

    fn from_register(reg: u32) -> IdReg {
        Self(reg & 0xFFFF_FFFE)
    }

    /// Sets the remote transmission (RTR) flag. This marks the identifier as
    /// being part of a remote frame.
    #[must_use = "returns a new IdReg without modifying `self`"]
    fn with_rtr(self, rtr: bool) -> IdReg {
        if rtr {
            Self(self.0 | Self::RTR_MASK)
        } else {
            Self(self.0 & !Self::RTR_MASK)
        }
    }

    /// Returns the identifier.
    fn to_id(self) -> Id {
        if self.is_extended() {
            Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) })
        } else {
            Id::Standard(unsafe {
                StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16)
            })
        }
    }

    /// Returns `true` if the identifier is an extended identifier.
    fn is_extended(self) -> bool {
        self.0 & Self::IDE_MASK != 0
    }

    /// Returns `true` if the identifier is a standard identifier.
    fn is_standard(self) -> bool {
        !self.is_extended()
    }

    /// Returns `true` if the identifer is part of a remote frame (RTR bit set).
    fn rtr(self) -> bool {
        self.0 & Self::RTR_MASK != 0
    }
}

impl Ord for IdReg {
    fn cmp(&self, other: &Self) -> Ordering {
        // When the IDs match, data frames have priority over remote frames.
        let rtr = self.rtr().cmp(&other.rtr()).reverse();

        let id_a = self.to_id();
        let id_b = other.to_id();
        match (id_a, id_b) {
            (Id::Standard(a), Id::Standard(b)) => {
                // Lower IDs have priority over higher IDs.
                a.as_raw().cmp(&b.as_raw()).reverse().then(rtr)
            }
            (Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr),
            (Id::Standard(a), Id::Extended(b)) => {
                // Standard frames have priority over extended frames if their Base IDs match.
                a.as_raw()
                    .cmp(&b.standard_id().as_raw())
                    .reverse()
                    .then(Ordering::Greater)
            }
            (Id::Extended(a), Id::Standard(b)) => a
                .standard_id()
                .as_raw()
                .cmp(&b.as_raw())
                .reverse()
                .then(Ordering::Less),
        }
    }
}

impl PartialOrd for IdReg {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// Configuration proxy to be used with `Can::configure()`.
pub struct CanConfig<I> {
    _can: PhantomData<I>,
}

impl<I> CanConfig<I>
where
    I: Instance,
{
    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    /// Configures the bit timings.
    ///
    /// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
    /// parameters as follows:
    ///
    /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
    ///   This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
    /// - *Sample Point*: Should normally be left at the default value of 87.5%.
    /// - *SJW*: Should normally be left at the default value of 1.
    ///
    /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
    /// parameter to this method.
    pub fn set_bit_timing(&mut self, btr: u32) {
        let can = self.registers();
        can.btr.modify(|r, w| unsafe {
            let mode_bits = r.bits() & 0xC000_0000;
            w.bits(mode_bits | btr)
        });
    }

    /// Enables or disables loopback mode: Internally connects the TX and RX
    /// signals together.
    pub fn set_loopback(&mut self, enabled: bool) {
        let can = self.registers();
        can.btr.modify(|_, w| w.lbkm().bit(enabled));
    }

    /// Enables or disables silent mode: Disconnects the TX signal from the pin.
    pub fn set_silent(&mut self, enabled: bool) {
        let can = self.registers();
        can.btr.modify(|_, w| w.silm().bit(enabled));
    }
}

/// Interface to a CAN peripheral.
pub struct Can<I: Instance> {
    instance: I,
}

impl<I> Can<I>
where
    I: Instance,
{
    /// Creates a CAN interface, taking ownership of the raw peripheral.
    pub fn new(instance: I) -> Self {
        Can { instance }
    }

    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    /// Returns a reference to the peripheral instance.
    ///
    /// This allows accessing HAL-specific data stored in the instance type.
    pub fn instance(&mut self) -> &mut I {
        &mut self.instance
    }

    /// Configure bit timings and silent/loop-back mode.
    ///
    /// Acutal configuration happens on the `CanConfig` that is passed to the
    /// closure. It must be done this way because those configuration bits can
    /// only be set if the CAN controller is in a special init mode.
    /// Puts the peripheral in sleep mode afterwards. `Can::enable()` must be
    /// called to exit sleep mode and start reception and transmission.
    pub fn configure<F>(&mut self, f: F)
    where
        F: FnOnce(&mut CanConfig<I>),
    {
        let can = self.registers();

        // Enter init mode.
        can.mcr
            .modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
        while can.msr.read().inak().bit_is_clear() {}

        let mut config = CanConfig { _can: PhantomData };
        f(&mut config);

        // Leave init mode: go back to sleep.
        self.sleep();
    }

    /// Configures the automatic wake-up feature.
    pub fn set_automatic_wakeup(&mut self, enabled: bool) {
        let can = self.registers();
        can.mcr.modify(|_, w| w.awum().bit(enabled));
    }

    /// Start reception and transmission.
    ///
    /// Waits for 11 consecutive recessive bits to sync to the CAN bus.
    pub fn enable(&mut self) -> nb::Result<(), Infallible> {
        let can = self.registers();
        let msr = can.msr.read();
        if msr.slak().bit_is_set() {
            can.mcr
                .modify(|_, w| w.abom().set_bit().sleep().clear_bit());
            Err(nb::Error::WouldBlock)
        } else {
            Ok(())
        }
    }

    /// Puts the peripheral in a sleep mode to save power.
    ///
    /// Reception and transmission is disabled.
    pub fn sleep(&mut self) {
        let can = self.registers();
        can.mcr
            .modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
        while can.msr.read().slak().bit_is_clear() {}
    }

    /// Starts listening for a CAN interrupt.
    pub fn enable_interrupt(&mut self, interrupt: Interrupt) {
        self.enable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
    }

    /// Starts listening for a set of CAN interrupts.
    pub fn enable_interrupts(&mut self, interrupts: Interrupts) {
        self.registers()
            .ier
            .modify(|r, w| unsafe { w.bits(r.bits() | interrupts.bits()) })
    }

    /// Stops listening for a CAN interrupt.
    pub fn disable_interrupt(&mut self, interrupt: Interrupt) {
        self.disable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
    }

    /// Stops listening for a set of CAN interrupts.
    pub fn disable_interrupts(&mut self, interrupts: Interrupts) {
        self.registers()
            .ier
            .modify(|r, w| unsafe { w.bits(r.bits() & !interrupts.bits()) })
    }

    /// Clears the pending flag of [`Interrupt::Wakeup`].
    pub fn clear_wakeup_interrupt(&mut self) {
        let can = self.registers();
        can.msr.write(|w| w.wkui().set_bit());
    }

    /// Splits this `Can` instance into transmitting and receiving halves, by reference.
    pub fn split_by_ref(&mut self) -> (&mut Tx<I>, &mut Rx<I>) {
        // Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
        let tx = unsafe { Tx::conjure_by_ref() };
        let rx = unsafe { Rx::conjure_by_ref() };
        (tx, rx)
    }

    /// Consumes this `Can` instance and splits it into transmitting and receiving halves.
    pub fn split(self) -> (Tx<I>, Rx<I>) {
        unsafe { (Tx::conjure(), Rx::conjure()) }
    }
}

impl<I: FilterOwner> Can<I> {
    /// Accesses the filter banks owned by this CAN peripheral.
    ///
    /// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
    /// peripheral instead.
    pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
        unsafe { MasterFilters::new() }
    }
}

/// Interface to the CAN transmitter part.
pub struct Tx<I> {
    _can: PhantomData<I>,
}

const fn ok_mask(idx: usize) -> u32 {
    0x02 << (8 * idx)
}

const fn abort_mask(idx: usize) -> u32 {
    0x80 << (8 * idx)
}

impl<I> Tx<I>
where
    I: Instance,
{
    unsafe fn conjure() -> Self {
        Self { _can: PhantomData }
    }

    /// Creates a `&mut Self` out of thin air.
    ///
    /// This is only safe if it is the only way to access an `Rx<I>`.
    unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
        // Cause out of bounds access when `Self` is not zero-sized.
        [()][core::mem::size_of::<Self>()];

        // Any aligned pointer is valid for ZSTs.
        &mut *NonNull::dangling().as_ptr()
    }

    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    /// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
    ///
    /// Frames are transmitted to the bus based on their priority (identifier).
    /// Transmit order is preserved for frames with identical identifiers.
    /// If all transmit mailboxes are full, a higher priority frame replaces the
    /// lowest priority frame, which is returned as `Ok(Some(frame))`.
    pub fn transmit(&mut self, frame: &Frame) -> nb::Result<Option<Frame>, Infallible> {
        let can = self.registers();

        // Get the index of the next free mailbox or the one with the lowest priority.
        let tsr = can.tsr.read();
        let idx = tsr.code().bits() as usize;

        let frame_is_pending =
            tsr.tme0().bit_is_clear() || tsr.tme1().bit_is_clear() || tsr.tme2().bit_is_clear();
        let pending_frame = if frame_is_pending {
            // High priority frames are transmitted first by the mailbox system.
            // Frames with identical identifier shall be transmitted in FIFO order.
            // The controller schedules pending frames of same priority based on the
            // mailbox index instead. As a workaround check all pending mailboxes
            // and only accept higher priority frames.
            self.check_priority(0, frame.id)?;
            self.check_priority(1, frame.id)?;
            self.check_priority(2, frame.id)?;

            let all_frames_are_pending =
                tsr.tme0().bit_is_clear() && tsr.tme1().bit_is_clear() && tsr.tme2().bit_is_clear();
            if all_frames_are_pending {
                // No free mailbox is available. This can only happen when three frames with
                // descending priority were requested for transmission and all of them are
                // blocked by bus traffic with even higher priority.
                // To prevent a priority inversion abort and replace the lowest priority frame.
                self.read_pending_mailbox(idx)
            } else {
                // There was a free mailbox.
                None
            }
        } else {
            // All mailboxes are available: Send frame without performing any checks.
            None
        };

        self.write_mailbox(idx, frame);
        Ok(pending_frame)
    }

    /// Returns `Ok` when the mailbox is free or has a lower priority than
    /// identifier than `id`.
    fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> {
        let can = self.registers();

        // Read the pending frame's id to check its priority.
        assert!(idx < 3);
        let tir = &can.tx[idx].tir.read();

        // Check the priority by comparing the identifiers. But first make sure the
        // frame has not finished transmission (`TXRQ` == 0) in the meantime.
        if tir.txrq().bit_is_set() && id >= IdReg::from_register(tir.bits()) {
            // There's a mailbox whose priority is higher or equal
            // the priority of the new frame.
            return Err(nb::Error::WouldBlock);
        }

        Ok(())
    }

    fn write_mailbox(&mut self, idx: usize, frame: &Frame) {
        let can = self.registers();

        debug_assert!(idx < 3);
        let mb = unsafe { &can.tx.get_unchecked(idx) };

        mb.tdtr
            .write(|w| unsafe { w.dlc().bits(frame.dlc() as u8) });
        mb.tdlr.write(|w| unsafe {
            w.bits(u32::from_ne_bytes(
                frame.data.bytes[0..4].try_into().unwrap(),
            ))
        });
        mb.tdhr.write(|w| unsafe {
            w.bits(u32::from_ne_bytes(
                frame.data.bytes[4..8].try_into().unwrap(),
            ))
        });
        mb.tir
            .write(|w| unsafe { w.bits(frame.id.0).txrq().set_bit() });
    }

    fn read_pending_mailbox(&mut self, idx: usize) -> Option<Frame> {
        if self.abort(idx) {
            let can = self.registers();
            debug_assert!(idx < 3);
            let mb = unsafe { &can.tx.get_unchecked(idx) };

            // Read back the pending frame.
            let mut pending_frame = Frame {
                id: IdReg(mb.tir.read().bits()),
                data: Data::empty(),
            };
            pending_frame.data[0..4].copy_from_slice(&mb.tdlr.read().bits().to_ne_bytes());
            pending_frame.data[4..8].copy_from_slice(&mb.tdhr.read().bits().to_ne_bytes());
            pending_frame.data.len = mb.tdtr.read().dlc().bits();

            Some(pending_frame)
        } else {
            // Abort request failed because the frame was already sent (or being sent) on
            // the bus. All mailboxes are now free. This can happen for small prescaler
            // values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
            // has preemted the execution.
            None
        }
    }

    /// Tries to abort a pending frame. Returns `true` when aborted.
    fn abort(&mut self, idx: usize) -> bool {
        let can = self.registers();

        can.tsr.write(|w| unsafe { w.bits(abort_mask(idx)) });

        // Wait for the abort request to be finished.
        loop {
            let tsr = can.tsr.read().bits();
            if tsr & abort_mask(idx) == 0 {
                break tsr & ok_mask(idx) == 0;
            }
        }
    }

    /// Returns `true` if no frame is pending for transmission.
    pub fn is_idle(&self) -> bool {
        let can = self.registers();
        let tsr = can.tsr.read();
        tsr.tme0().bit_is_set() && tsr.tme1().bit_is_set() && tsr.tme2().bit_is_set()
    }

    /// Clears the request complete flag for all mailboxes.
    pub fn clear_interrupt_flags(&mut self) {
        let can = self.registers();
        can.tsr
            .write(|w| w.rqcp2().set_bit().rqcp1().set_bit().rqcp0().set_bit());
    }
}

/// Interface to the CAN receiver part.
pub struct Rx<I> {
    _can: PhantomData<I>,
}

impl<I> Rx<I>
where
    I: Instance,
{
    unsafe fn conjure() -> Self {
        Self { _can: PhantomData }
    }

    /// Creates a `&mut Self` out of thin air.
    ///
    /// This is only safe if it is the only way to access an `Rx<I>`.
    unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
        // Cause out of bounds access when `Self` is not zero-sized.
        [()][core::mem::size_of::<Self>()];

        // Any aligned pointer is valid for ZSTs.
        &mut *NonNull::dangling().as_ptr()
    }

    /// Returns a received frame if available.
    ///
    /// Returns `Err` when a frame was lost due to buffer overrun.
    pub fn receive(&mut self) -> nb::Result<Frame, ()> {
        match self.receive_fifo(0) {
            Err(nb::Error::WouldBlock) => self.receive_fifo(1),
            result => result,
        }
    }

    fn registers(&self) -> &RegisterBlock {
        unsafe { &*I::REGISTERS }
    }

    fn receive_fifo(&mut self, fifo_nr: usize) -> nb::Result<Frame, ()> {
        let can = self.registers();

        assert!(fifo_nr < 2);
        let rfr = &can.rfr[fifo_nr];
        let rx = &can.rx[fifo_nr];

        // Check if a frame is available in the mailbox.
        let rfr_read = rfr.read();
        if rfr_read.fmp().bits() == 0 {
            return Err(nb::Error::WouldBlock);
        }

        // Check for RX FIFO overrun.
        if rfr_read.fovr().bit_is_set() {
            rfr.write(|w| w.fovr().set_bit());
            return Err(nb::Error::Other(()));
        }

        // Read the frame.
        let mut frame = Frame {
            id: IdReg(rx.rir.read().bits()),
            data: [0; 8].into(),
        };
        frame.data[0..4].copy_from_slice(&rx.rdlr.read().bits().to_ne_bytes());
        frame.data[4..8].copy_from_slice(&rx.rdhr.read().bits().to_ne_bytes());
        frame.data.len = rx.rdtr.read().dlc().bits();

        // Release the mailbox.
        rfr.write(|w| w.rfom().set_bit());

        Ok(frame)
    }
}