1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
//! This module exports methods to flatten the `BVH` and traverse it iteratively.

use aabb::AABB;
use bvh::{BVH, BVHNode};
use ray::Ray;

/// A structure of a node of a flat [`BVH`]. The structure of the nodes allows for an
/// iterative traversal approach without the necessity to maintain a stack or queue.
///
/// [`BVH`]: struct.BVH.html
///
pub struct FlatNode {
    /// The [`AABB`] of the [`BVH`] node. Prior to testing the [`AABB`] bounds,
    /// the `entry_index` must be checked. In case the entry_index is [`u32::max_value()`],
    /// the [`AABB`] is undefined.
    ///
    /// [`AABB`]: ../aabb/struct.AABB.html
    /// [`BVH`]: struct.BVH.html
    /// [`u32::max_value()`]: https://doc.rust-lang.org/std/u32/constant.MAX.html
    ///
    aabb: AABB,

    /// The index of the `FlatNode` to jump to, if the [`AABB`] test is positive.
    /// If this value is [`u32::max_value()`] then the current node is a leaf node.
    /// Leaf nodes contain a shape index and an exit index. In leaf nodes the
    /// [`AABB`] is undefined.
    ///
    /// [`AABB`]: ../aabb/struct.AABB.html
    /// [`u32::max_value()`]: https://doc.rust-lang.org/std/u32/constant.MAX.html
    ///
    entry_index: u32,

    /// The index of the `FlatNode` to jump to, if the [`AABB`] test is negative.
    ///
    /// [`AABB`]: ../aabb/struct.AABB.html
    ///
    exit_index: u32,

    /// The index of the shape in the shapes array.
    shape_index: u32,
}

/// Prints a textual representation of a flat [`BVH`].
///
/// [`BVH`]: struct.BVH.html
///
pub fn pretty_print_flat_bvh(flat_nodes: &[FlatNode]) {
    for (i, node) in flat_nodes.iter().enumerate() {
        println!("{}\tentry {}\texit {}\tshape {}",
                 i,
                 node.entry_index,
                 node.exit_index,
                 node.shape_index);
    }
}

/// Traverses a flat [`BVH`] structure iteratively.
/// Returns a [`Vec`] of indices which are hit by `ray` with a high probability.
///
/// [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
/// [`BVH`]: struct.BVH.html
///
/// # Examples
///
/// ```
/// use bvh::aabb::{AABB, Bounded};
/// use bvh::bvh::BVH;
/// use bvh::flat_bvh::traverse_flat_bvh;
/// use bvh::nalgebra::{Point3, Vector3};
/// use bvh::ray::Ray;
///
/// # struct Sphere {
/// #     position: Point3<f32>,
/// #     radius: f32,
/// # }
/// #
/// # impl Bounded for Sphere {
/// #     fn aabb(&self) -> AABB {
/// #         let half_size = Vector3::new(self.radius, self.radius, self.radius);
/// #         let min = self.position - half_size;
/// #         let max = self.position + half_size;
/// #         AABB::with_bounds(min, max)
/// #     }
/// # }
/// #
/// # fn create_bounded_shapes() -> Vec<Sphere> {
/// #     let mut spheres = Vec::new();
/// #     for i in 0..1000u32 {
/// #         let position = Point3::new(i as f32, i as f32, i as f32);
/// #         let radius = (i % 10) as f32 + 1.0;
/// #         spheres.push(Sphere {
/// #             position: position,
/// #             radius: radius,
/// #         });
/// #     }
/// #     spheres
/// # }
/// #
/// let origin = Point3::new(0.0,0.0,0.0);
/// let direction = Vector3::new(1.0,0.0,0.0);
/// let ray = Ray::new(origin, direction);
/// let shapes = create_bounded_shapes();
/// let bvh = BVH::build(&shapes);
/// let flat_bvh = bvh.flatten();
/// let hit_shape_indices = traverse_flat_bvh(&ray, &flat_bvh);
/// ```
pub fn traverse_flat_bvh(ray: &Ray, flat_nodes: &[FlatNode]) -> Vec<usize> {
    let mut hit_shapes = Vec::new();
    let mut index = 0;

    // The traversal loop should terminate when `max_length` is set as the next node index
    let max_length = flat_nodes.len();

    // Iterate while the node index is valid
    while index < max_length {
        let node = &flat_nodes[index];

        if node.entry_index == u32::max_value() {
            // If the entry_index is MAX_UINT32, then it's a leaf node
            let shape_index = node.shape_index;
            hit_shapes.push(shape_index as usize);

            // Exit the current node
            index = node.exit_index as usize;
        } else if ray.intersects_aabb(&node.aabb) {
            // If entry_index is not MAX_UINT32 and the AABB test passes, then
            // proceed to the node in entry_index (which goes down the bvh branch)
            index = node.entry_index as usize;
        } else {
            // If entry_index is not MAX_UINT32 and the AABB test fails, then
            // proceed to the node in exit_index (which defines the next untested partition)
            index = node.exit_index as usize;
        }
    }

    hit_shapes
}

impl BVHNode {
    /// Flattens the [`BVH`], so that it can be traversed in an iterative manner.
    /// The iterative traverse procedure is implemented in [`traverse_flat_bvh()`].
    ///
    /// [`BVH`]: struct.BVH.html
    /// [`traverse_flat_bvh()`]: method.traverse_flat_bvh.html
    ///
    pub fn flatten(&self, vec: &mut Vec<FlatNode>, next_free: usize) -> usize {
        match *self {
            BVHNode::Node { child_l_aabb, ref child_l, child_r_aabb, ref child_r } => {
                // Create the enclosing node for the left subtree
                vec.push(FlatNode {
                    aabb: child_l_aabb,
                    entry_index: (next_free + 1) as u32,
                    exit_index: 0,
                    shape_index: u32::max_value(),
                });

                // Create the flat left subtree and update the exit index in the enclosing node
                let index_after_child_l = child_l.flatten(vec, next_free + 1);
                vec[next_free as usize].exit_index = index_after_child_l as u32;

                // Create the enclosing node for the right subtree
                vec.push(FlatNode {
                    aabb: child_r_aabb,
                    entry_index: (index_after_child_l + 1) as u32,
                    exit_index: 0,
                    shape_index: u32::max_value(),
                });

                // Create the flat right subtree and update the exit index in the enclosing node
                let index_after_child_r = child_r.flatten(vec, index_after_child_l + 1);
                vec[index_after_child_l as usize].exit_index = index_after_child_r as u32;

                index_after_child_r
            }
            BVHNode::Leaf { ref shapes } => {
                let mut next_shape = next_free;

                // Create a node for each shape of a leaf
                for shape_index in shapes {
                    next_shape += 1;

                    // Create the flat leaf node
                    vec.push(FlatNode {
                        aabb: AABB::empty(),
                        entry_index: u32::max_value(),
                        exit_index: next_shape as u32,
                        shape_index: *shape_index as u32,
                    });
                }

                next_shape
            }
        }
    }

    /// Creates a flat node from a BVH inner node and its AABB. Returns the next free index.
    /// TODO: change the algorithm which pushes `FlatNode`s to a vector to not use indices this
    /// much. Implement an algorithm which writes directly to a writable slice.
    fn create_flat_branch<F, FNodeType>(&self,
                                        this_aabb: &AABB,
                                        vec: &mut Vec<FNodeType>,
                                        next_free: usize,
                                        constructor: &F)
                                        -> usize
        where F: Fn(&AABB, u32, u32, u32) -> FNodeType
    {
        // Create dummy node
        let dummy = constructor(&AABB::empty(), 0, 0, 0);
        vec.push(dummy);
        assert!(vec.len() - 1 == next_free);

        // Create subtree
        let index_after_subtree = self.flatten_custom(vec, next_free + 1, constructor);

        // Replace dummy node by actual node with the entry index pointing to the subtree
        // and the exit index pointing to the next node after the subtree
        let navigator_node = constructor(this_aabb,
                                         (next_free + 1) as u32,
                                         index_after_subtree as u32,
                                         u32::max_value());
        vec[next_free] = navigator_node;
        index_after_subtree
    }

    /// Flattens the [`BVH`], so that it can be traversed in an iterative manner.
    /// The iterative traverse procedure is implemented in [`traverse_flat_bvh`].
    /// This method constructs custom flat nodes using the `constructor`.
    ///
    /// [`BVH`]: struct.BVH.html
    /// [`traverse_flat_bvh`]: method.traverse_flat_bvh.html
    ///
    pub fn flatten_custom<F, FNodeType>(&self,
                                        vec: &mut Vec<FNodeType>,
                                        next_free: usize,
                                        constructor: &F)
                                        -> usize
        where F: Fn(&AABB, u32, u32, u32) -> FNodeType
    {
        match *self {
            BVHNode::Node { ref child_l_aabb, ref child_l, ref child_r_aabb, ref child_r } => {
                let index_after_child_l =
                    child_l.create_flat_branch(child_l_aabb, vec, next_free, constructor);
                child_r.create_flat_branch(child_r_aabb, vec, index_after_child_l, constructor)
            }

            BVHNode::Leaf { ref shapes } => {
                let mut next_shape = next_free;
                for shape_index in shapes {
                    next_shape += 1;
                    let leaf_node = constructor(&AABB::empty(),
                                                u32::max_value(),
                                                next_shape as u32,
                                                *shape_index as u32);
                    vec.push(leaf_node);
                }

                next_shape
            }
        }
    }
}

impl BVH {
    /// Flattens the [`BVH`] so that it can be traversed iteratively.
    ///
    /// [`BVH`]: struct.BVH.html
    ///
    /// # Examples
    ///
    /// ```
    /// use bvh::aabb::{AABB, Bounded};
    /// use bvh::bvh::BVH;
    /// use bvh::nalgebra::{Point3, Vector3};
    /// use bvh::ray::Ray;
    ///
    /// # struct Sphere {
    /// #     position: Point3<f32>,
    /// #     radius: f32,
    /// # }
    /// #
    /// # impl Bounded for Sphere {
    /// #     fn aabb(&self) -> AABB {
    /// #         let half_size = Vector3::new(self.radius, self.radius, self.radius);
    /// #         let min = self.position - half_size;
    /// #         let max = self.position + half_size;
    /// #         AABB::with_bounds(min, max)
    /// #     }
    /// # }
    /// #
    /// # fn create_bounded_shapes() -> Vec<Sphere> {
    /// #     let mut spheres = Vec::new();
    /// #     for i in 0..1000u32 {
    /// #         let position = Point3::new(i as f32, i as f32, i as f32);
    /// #         let radius = (i % 10) as f32 + 1.0;
    /// #         spheres.push(Sphere {
    /// #             position: position,
    /// #             radius: radius,
    /// #         });
    /// #     }
    /// #     spheres
    /// # }
    /// #
    /// let origin = Point3::new(0.0,0.0,0.0);
    /// let direction = Vector3::new(1.0,0.0,0.0);
    /// let ray = Ray::new(origin, direction);
    /// let shapes = create_bounded_shapes();
    /// let bvh = BVH::build(&shapes);
    /// let flat_bvh = bvh.flatten();
    /// ```
    pub fn flatten(&self) -> Vec<FlatNode> {
        let mut vec = Vec::new();
        self.root.flatten(&mut vec, 0);
        vec
    }

    /// Flattens the [`BVH`] so that it can be traversed iteratively.
    /// Constructs the flat nodes using the supplied function.
    /// This function can be used, when the flat bvh nodes should be of some particular
    /// non-default structure.
    /// The `constructor` is fed the following arguments in this order:
    ///
    /// 1.0 &AABB: The enclosing `AABB`
    /// 2.0 u32: The index of the nested node
    /// 3.0 u32: The exit index
    /// 4.0 u32: The shape index
    ///
    /// [`BVH`]: struct.BVH.html
    ///
    /// # Examples
    ///
    /// ```
    /// use bvh::aabb::{AABB, Bounded};
    /// use bvh::bvh::BVH;
    /// use bvh::nalgebra::{Point3, Vector3};
    /// use bvh::ray::Ray;
    ///
    /// # struct Sphere {
    /// #     position: Point3<f32>,
    /// #     radius: f32,
    /// # }
    /// #
    /// # impl Bounded for Sphere {
    /// #     fn aabb(&self) -> AABB {
    /// #         let half_size = Vector3::new(self.radius, self.radius, self.radius);
    /// #         let min = self.position - half_size;
    /// #         let max = self.position + half_size;
    /// #         AABB::with_bounds(min, max)
    /// #     }
    /// # }
    /// #
    /// # fn create_bounded_shapes() -> Vec<Sphere> {
    /// #     let mut spheres = Vec::new();
    /// #     for i in 0..1000u32 {
    /// #         let position = Point3::new(i as f32, i as f32, i as f32);
    /// #         let radius = (i % 10) as f32 + 1.0;
    /// #         spheres.push(Sphere {
    /// #             position: position,
    /// #             radius: radius,
    /// #         });
    /// #     }
    /// #     spheres
    /// # }
    /// #
    /// struct CustomStruct {
    ///     aabb: AABB,
    ///     entry_index: u32,
    ///     exit_index: u32,
    ///     shape_index: u32,
    /// }
    ///
    /// fn custom_struct_constructor(aabb: &AABB,
    ///                              entry_index: u32,
    ///                              exit_index: u32,
    ///                              shape_index: u32)
    ///                              -> CustomStruct {
    ///     CustomStruct {
    ///         aabb: *aabb,
    ///         entry_index: entry_index,
    ///         exit_index: exit_index,
    ///         shape_index: shape_index,
    ///     }
    /// }
    ///
    /// let shapes = create_bounded_shapes();
    /// let bvh = BVH::build(&shapes);
    /// let custom_flat_bvh = bvh.flatten_custom(&custom_struct_constructor);
    /// ```
    pub fn flatten_custom<F, FNodeType>(&self, constructor: &F) -> Vec<FNodeType>
        where F: Fn(&AABB, u32, u32, u32) -> FNodeType
    {
        let mut vec = Vec::new();
        self.root.flatten_custom(&mut vec, 0, constructor);
        vec
    }
}

#[cfg(test)]
mod tests {
    use aabb::{AABB, Bounded};
    use bvh::BVH;
    use bvh::tests::{XBox, build_some_bvh, create_n_cubes, create_ray};
    use flat_bvh::{traverse_flat_bvh, FlatNode};
    use nalgebra::{Point3, Vector3};
    use ray::Ray;

    #[test]
    /// Builds and flattens a BVH. Tests whether the `flatten` procedure succeeds.
    fn test_flatten() {
        let (_, bvh) = build_some_bvh();
        bvh.flatten();
    }

    #[test]
    /// Runs some primitive tests for intersections of a ray with
    /// a fixed scene given as a flat BVH.
    fn test_traverse_flat_bvh() {
        let (shapes, bvh) = build_some_bvh();
        let flat_bvh = bvh.flatten();

        fn test_ray(ray: &Ray, flat_bvh: &[FlatNode], shapes: &[XBox]) -> Vec<usize> {
            let hit_shapes = traverse_flat_bvh(ray, flat_bvh);
            for (index, shape) in shapes.iter().enumerate() {
                if !hit_shapes.contains(&index) {
                    assert!(!ray.intersects_aabb(&shape.aabb()));
                }
            }
            hit_shapes
        }

        // Define a ray which traverses the x-axis from afar
        let position_1 = Point3::new(-1000.0, 0.0, 0.0);
        let direction_1 = Vector3::new(1.0, 0.0, 0.0);
        let ray_1 = Ray::new(position_1, direction_1);
        let hit_shapes_1 = test_ray(&ray_1, &flat_bvh, &shapes);
        for i in 0..21 {
            assert!(hit_shapes_1.contains(&i));
        }

        // Define a ray which traverses the y-axis from afar
        let position_2 = Point3::new(1.0, -1000.0, 0.0);
        let direction_2 = Vector3::new(0.0, 1.0, 0.0);
        let ray_2 = Ray::new(position_2, direction_2);
        let hit_shapes_2 = test_ray(&ray_2, &flat_bvh, &shapes);
        assert!(hit_shapes_2.contains(&11));

        // Define a ray which intersects the x-axis diagonally
        let position_3 = Point3::new(6.0, 0.5, 0.0);
        let direction_3 = Vector3::new(-2.0, -1.0, 0.0);
        let ray_3 = Ray::new(position_3, direction_3);
        let hit_shapes_3 = test_ray(&ray_3, &flat_bvh, &shapes);
        assert!(hit_shapes_3.contains(&15));
        assert!(hit_shapes_3.contains(&16));
        assert!(hit_shapes_3.contains(&17));
    }

    #[test]
    /// Test whether the `flatten_custom` produces a flat `BVH` with the same relative structure
    /// as `flatten`.
    fn test_compare_default_and_custom_flat_bvh() {
        fn custom_constructor(aabb: &AABB,
                              entry_index: u32,
                              exit_index: u32,
                              shape_index: u32)
                              -> FlatNode {
            FlatNode {
                aabb: *aabb,
                entry_index: entry_index,
                exit_index: exit_index,
                shape_index: shape_index,
            }
        }

        // Generate a BVH and flatten it defaultly, and using a custom constructor
        let triangles = create_n_cubes(1_000);
        let bvh = BVH::build(&triangles);
        let flat_bvh = bvh.flatten();
        let flat_bvh_custom = bvh.flatten_custom(&custom_constructor);

        // It should produce the same structure in both cases
        for (default_node, custom_node) in flat_bvh.iter().zip(flat_bvh_custom.iter()) {
            assert_eq!(default_node.entry_index, custom_node.entry_index);
            assert_eq!(default_node.exit_index, custom_node.exit_index);
            assert_eq!(default_node.shape_index, custom_node.shape_index);
        }
    }

    #[bench]
    /// Benchmark the flattening of a BVH with 120,000 triangles.
    fn bench_flatten_120k_triangles_bvh(b: &mut ::test::Bencher) {
        let triangles = create_n_cubes(10_000);
        let bvh = BVH::build(&triangles);

        b.iter(|| {
            bvh.flatten();
        });
    }

    #[bench]
    /// Benchmark intersecting 120,000 triangles using the recursive BVH.
    fn bench_intersect_120k_triangles_bvh_flat(b: &mut ::test::Bencher) {
        let triangles = create_n_cubes(10_000);
        let bvh = BVH::build(&triangles);
        let flat_bvh = bvh.flatten();
        let mut seed = 0;

        b.iter(|| {
            let ray = create_ray(&mut seed);

            // Traverse the flat BVH
            let hits = traverse_flat_bvh(&ray, &flat_bvh);

            // Traverse the resulting list of positive AABB tests
            for index in &hits {
                let triangle = &triangles[*index];
                ray.intersects_triangle(&triangle.a, &triangle.b, &triangle.c);
            }
        });
    }
}