use super::numeric;
use crate::kernel::reduce::{self, init_reduce_output};
use crate::kernel::{unary_default, unary_inplace_default};
use crate::{
element::{FloatElement, IntElement},
kernel, unary, unary_inplace, GraphicsApi, Wgpu,
};
use burn_tensor::ops::{BoolTensor, Device, FloatTensor, IntElem, IntTensor};
use burn_tensor::Reader;
use burn_tensor::{ops::IntTensorOps, Data, Shape};
use std::ops::Range;
impl<G, F, I> IntTensorOps<Wgpu<G, F, I>> for Wgpu<G, F, I>
where
G: GraphicsApi + 'static,
F: FloatElement,
I: IntElement,
{
fn int_empty<const D: usize>(shape: Shape<D>, device: &Device<Self>) -> IntTensor<Self, D> {
super::empty::<G, I, D>(shape, device)
}
fn int_shape<const D: usize>(tensor: &IntTensor<Self, D>) -> Shape<D> {
tensor.shape.clone()
}
fn int_into_data<const D: usize>(tensor: IntTensor<Self, D>) -> Reader<Data<I, D>> {
super::into_data(tensor)
}
fn int_from_data<const D: usize>(
data: Data<I, D>,
device: &Device<Self>,
) -> IntTensor<Self, D> {
super::from_data::<G, I, D>(data, device)
}
fn int_device<const D: usize>(tensor: &IntTensor<Self, D>) -> Device<Self> {
tensor.device.clone()
}
fn int_to_device<const D: usize>(
tensor: IntTensor<Self, D>,
device: &Device<Self>,
) -> IntTensor<Self, D> {
super::to_device::<G, I, D>(tensor, device)
}
fn int_reshape<const D1: usize, const D2: usize>(
tensor: IntTensor<Self, D1>,
shape: Shape<D2>,
) -> IntTensor<Self, D2> {
super::reshape(tensor, shape)
}
fn int_slice<const D1: usize, const D2: usize>(
tensor: IntTensor<Self, D1>,
ranges: [Range<usize>; D2],
) -> IntTensor<Self, D1> {
kernel::slice(tensor, ranges)
}
fn int_slice_assign<const D1: usize, const D2: usize>(
tensor: IntTensor<Self, D1>,
ranges: [Range<usize>; D2],
value: IntTensor<Self, D1>,
) -> IntTensor<Self, D1> {
kernel::slice_assign(tensor, ranges, value)
}
fn int_mask_where<const D: usize>(
tensor: IntTensor<Self, D>,
mask: BoolTensor<Self, D>,
value: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
kernel::mask_where(tensor, mask, value)
}
fn int_mask_fill<const D: usize>(
tensor: IntTensor<Self, D>,
mask: BoolTensor<Self, D>,
value: IntElem<Self>,
) -> IntTensor<Self, D> {
kernel::mask_fill(tensor, mask, value)
}
fn int_gather<const D: usize>(
dim: usize,
tensor: IntTensor<Self, D>,
indices: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
kernel::gather(dim, tensor, indices)
}
fn int_scatter<const D: usize>(
dim: usize,
tensor: IntTensor<Self, D>,
indices: IntTensor<Self, D>,
value: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
kernel::scatter(dim, tensor, indices, value)
}
fn int_select<const D: usize>(
tensor: IntTensor<Self, D>,
dim: usize,
indices: IntTensor<Self, 1>,
) -> IntTensor<Self, D> {
kernel::select(tensor, dim, indices)
}
fn int_select_assign<const D: usize>(
tensor: IntTensor<Self, D>,
dim: usize,
indices: IntTensor<Self, 1>,
value: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
kernel::select_assign(tensor, dim, indices, value)
}
fn int_cat<const D: usize>(tensors: Vec<IntTensor<Self, D>>, dim: usize) -> IntTensor<Self, D> {
kernel::cat(tensors, dim)
}
fn int_equal<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> BoolTensor<Self, D> {
kernel::equal::<I, D>(lhs, rhs)
}
fn int_equal_elem<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> BoolTensor<Self, D> {
kernel::equal_elem::<I, D>(lhs, rhs)
}
fn int_greater<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> BoolTensor<Self, D> {
kernel::greater::<I, D>(lhs, rhs)
}
fn int_greater_elem<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> BoolTensor<Self, D> {
kernel::greater_elem::<I, D>(lhs, rhs)
}
fn int_greater_equal<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> BoolTensor<Self, D> {
kernel::greater_equal::<I, D>(lhs, rhs)
}
fn int_greater_equal_elem<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> BoolTensor<Self, D> {
kernel::greater_equal_elem::<I, D>(lhs, rhs)
}
fn int_lower<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> BoolTensor<Self, D> {
kernel::lower::<I, D>(lhs, rhs)
}
fn int_lower_elem<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> BoolTensor<Self, D> {
kernel::lower_elem::<I, D>(lhs, rhs)
}
fn int_lower_equal<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> BoolTensor<Self, D> {
kernel::lower_equal::<I, D>(lhs, rhs)
}
fn int_lower_equal_elem<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> BoolTensor<Self, D> {
kernel::lower_equal_elem::<I, D>(lhs, rhs)
}
fn int_add<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
numeric::add::<I, D>(lhs, rhs)
}
fn int_add_scalar<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> IntTensor<Self, D> {
numeric::add_scalar(lhs, rhs)
}
fn int_sub<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
numeric::sub(lhs, rhs)
}
fn int_sub_scalar<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> IntTensor<Self, D> {
numeric::sub_scalar(lhs, rhs)
}
fn int_mul<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
numeric::mul(lhs, rhs)
}
fn int_mul_scalar<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> IntTensor<Self, D> {
numeric::mul_scalar(lhs, rhs)
}
fn int_div<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntTensor<Self, D>,
) -> IntTensor<Self, D> {
numeric::div(lhs, rhs)
}
fn int_div_scalar<const D: usize>(
lhs: IntTensor<Self, D>,
rhs: IntElem<Self>,
) -> IntTensor<Self, D> {
numeric::div_scalar(lhs, rhs)
}
fn int_zeros<const D: usize>(shape: Shape<D>, device: &Device<Self>) -> IntTensor<Self, D> {
numeric::zeros::<G, I, D>(shape, device)
}
fn int_ones<const D: usize>(shape: Shape<D>, device: &Device<Self>) -> IntTensor<Self, D> {
numeric::ones::<G, I, D>(shape, device)
}
fn int_sum<const D: usize>(tensor: IntTensor<Self, D>) -> IntTensor<Self, 1> {
kernel::reduce::sum(tensor)
}
fn int_sum_dim<const D: usize>(tensor: IntTensor<Self, D>, dim: usize) -> IntTensor<Self, D> {
let output = init_reduce_output(&tensor, dim);
reduce::sum_dim(tensor, output, dim)
}
fn int_mean_dim<const D: usize>(tensor: IntTensor<Self, D>, dim: usize) -> IntTensor<Self, D> {
let output = init_reduce_output(&tensor, dim);
reduce::mean_dim(tensor, output, dim)
}
fn int_argmax<const D: usize>(tensor: IntTensor<Self, D>, dim: usize) -> IntTensor<Self, D> {
kernel::reduce::argmax(tensor, dim)
}
fn int_argmin<const D: usize>(tensor: IntTensor<Self, D>, dim: usize) -> IntTensor<Self, D> {
kernel::reduce::argmin(tensor, dim)
}
fn int_clamp_min<const D: usize>(
tensor: IntTensor<Self, D>,
min: IntElem<Self>,
) -> IntTensor<Self, D> {
kernel::clamp_min(tensor, min)
}
fn int_clamp_max<const D: usize>(
tensor: IntTensor<Self, D>,
max: IntElem<Self>,
) -> IntTensor<Self, D> {
kernel::clamp_max(tensor, max)
}
fn int_clamp<const D: usize>(
tensor: IntTensor<Self, D>,
min: IntElem<Self>,
max: IntElem<Self>,
) -> IntTensor<Self, D> {
kernel::clamp(tensor, min, max)
}
fn int_abs<const D: usize>(tensor: IntTensor<Self, D>) -> IntTensor<Self, D> {
unary!(IntAbs, func "abs");
unary_inplace!(IntAbsInplace, func "abs");
if tensor.can_mut() {
return unary_inplace_default::<IntAbsInplace, I, D>(tensor);
}
unary_default::<IntAbs, I, D>(tensor)
}
fn int_into_float<const D: usize>(tensor: IntTensor<Self, D>) -> FloatTensor<Self, D> {
kernel::cast(tensor)
}
fn int_swap_dims<const D: usize>(
mut tensor: IntTensor<Self, D>,
dim1: usize,
dim2: usize,
) -> IntTensor<Self, D> {
tensor.strides.swap(dim1, dim2);
tensor.shape.dims.swap(dim1, dim2);
tensor
}
}