use crate::{
element::{FloatElement, IntElement},
kernel,
tensor::WgpuTensor,
GraphicsApi, Wgpu,
};
use burn_tensor::ops::{BoolTensor, Device, FloatTensor, IntTensor};
use burn_tensor::{ops::BoolTensorOps, Data, Shape};
use burn_tensor::{ops::IntTensorOps, Reader};
use std::ops::Range;
impl<G, F, I> BoolTensorOps<Wgpu<G, F, I>> for Wgpu<G, F, I>
where
G: GraphicsApi + 'static,
F: FloatElement,
I: IntElement,
{
fn bool_empty<const D: usize>(shape: Shape<D>, device: &Device<Self>) -> BoolTensor<Self, D> {
super::empty::<G, u32, D>(shape, device)
}
fn bool_shape<const D: usize>(tensor: &BoolTensor<Self, D>) -> Shape<D> {
tensor.shape.clone()
}
fn bool_into_data<const D: usize>(tensor: BoolTensor<Self, D>) -> Reader<Data<bool, D>> {
super::bool_into_data(tensor)
}
fn bool_from_data<const D: usize>(
data: Data<bool, D>,
device: &Device<Self>,
) -> BoolTensor<Self, D> {
let data: Data<u32, D> = Data::new(
data.value
.into_iter()
.map(|c| match c {
true => 1,
false => 0,
})
.collect(),
data.shape,
);
super::from_data::<G, u32, D>(data, device)
}
fn bool_into_int<const D: usize>(tensor: BoolTensor<Self, D>) -> IntTensor<Self, D> {
if std::mem::size_of::<I>() == std::mem::size_of::<u32>() {
return WgpuTensor::new(tensor.client, tensor.device, tensor.shape, tensor.handle);
}
let device = Self::bool_device(&tensor);
let data = Self::bool_into_data(tensor)
.read_sync()
.expect("Can't convert bool to int with a different type size async")
.convert::<I>();
Self::int_from_data(data, &device)
}
fn bool_device<const D: usize>(tensor: &BoolTensor<Self, D>) -> Device<Self> {
tensor.device.clone()
}
fn bool_to_device<const D: usize>(
tensor: BoolTensor<Self, D>,
device: &Device<Self>,
) -> BoolTensor<Self, D> {
super::to_device::<G, u32, D>(tensor, device)
}
fn bool_reshape<const D1: usize, const D2: usize>(
tensor: BoolTensor<Self, D1>,
shape: Shape<D2>,
) -> BoolTensor<Self, D2> {
super::reshape(tensor, shape)
}
fn bool_slice<const D1: usize, const D2: usize>(
tensor: BoolTensor<Self, D1>,
ranges: [Range<usize>; D2],
) -> BoolTensor<Self, D1> {
kernel::slice(tensor, ranges)
}
fn bool_slice_assign<const D1: usize, const D2: usize>(
tensor: BoolTensor<Self, D1>,
ranges: [Range<usize>; D2],
value: BoolTensor<Self, D1>,
) -> BoolTensor<Self, D1> {
kernel::slice_assign(tensor, ranges, value)
}
fn bool_cat<const D: usize>(
tensors: Vec<BoolTensor<Self, D>>,
dim: usize,
) -> BoolTensor<Self, D> {
kernel::cat(tensors, dim)
}
fn bool_equal<const D: usize>(
lhs: BoolTensor<Self, D>,
rhs: BoolTensor<Self, D>,
) -> BoolTensor<Self, D> {
kernel::equal(lhs, rhs)
}
fn bool_not<const D: usize>(tensor: BoolTensor<Self, D>) -> BoolTensor<Self, D> {
kernel::equal_elem(tensor, 0)
}
fn bool_into_float<const D: usize>(tensor: BoolTensor<Self, D>) -> FloatTensor<Self, D> {
kernel::cast(tensor)
}
fn bool_swap_dims<const D: usize>(
mut tensor: BoolTensor<Self, D>,
dim1: usize,
dim2: usize,
) -> <Wgpu<G, F, I> as burn_tensor::backend::Backend>::BoolTensorPrimitive<D> {
tensor.strides.swap(dim1, dim2);
tensor.shape.dims.swap(dim1, dim2);
tensor
}
}