Struct burn_tensor::bf16
source · pub struct bf16(/* private fields */);Expand description
A 16-bit floating point type implementing the bfloat16 format.
The bfloat16 floating point format is a truncated 16-bit version of the IEEE 754 standard
binary32, a.k.a f32. bf16 has approximately the same dynamic range as f32 by
having a lower precision than f16. While f16 has a precision of
11 bits, bf16 has a precision of only 8 bits.
Implementations§
source§impl bf16
impl bf16
sourcepub fn from_f32(value: f32) -> bf16
pub fn from_f32(value: f32) -> bf16
Constructs a bf16 value from a 32-bit floating point value.
This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. Subnormal values that are too tiny to be represented will result in ±0. All other values are truncated and rounded to the nearest representable value.
sourcepub const fn from_f32_const(value: f32) -> bf16
pub const fn from_f32_const(value: f32) -> bf16
Constructs a bf16 value from a 32-bit floating point value.
This function is identical to from_f32 except it never uses hardware
intrinsics, which allows it to be const. from_f32 should be preferred
in any non-const context.
This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. Subnormal values that are too tiny to be represented will result in ±0. All other values are truncated and rounded to the nearest representable value.
sourcepub fn from_f64(value: f64) -> bf16
pub fn from_f64(value: f64) -> bf16
Constructs a bf16 value from a 64-bit floating point value.
This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that underflow the minimum exponent will result in subnormals or ±0. All other values are truncated and rounded to the nearest representable value.
sourcepub const fn from_f64_const(value: f64) -> bf16
pub const fn from_f64_const(value: f64) -> bf16
Constructs a bf16 value from a 64-bit floating point value.
This function is identical to from_f64 except it never uses hardware
intrinsics, which allows it to be const. from_f64 should be preferred
in any non-const context.
This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that underflow the minimum exponent will result in subnormals or ±0. All other values are truncated and rounded to the nearest representable value.
sourcepub const fn to_le_bytes(self) -> [u8; 2]
pub const fn to_le_bytes(self) -> [u8; 2]
Returns the memory representation of the underlying bit representation as a byte array in little-endian byte order.
§Examples
let bytes = bf16::from_f32(12.5).to_le_bytes();
assert_eq!(bytes, [0x48, 0x41]);sourcepub const fn to_be_bytes(self) -> [u8; 2]
pub const fn to_be_bytes(self) -> [u8; 2]
Returns the memory representation of the underlying bit representation as a byte array in big-endian (network) byte order.
§Examples
let bytes = bf16::from_f32(12.5).to_be_bytes();
assert_eq!(bytes, [0x41, 0x48]);sourcepub const fn to_ne_bytes(self) -> [u8; 2]
pub const fn to_ne_bytes(self) -> [u8; 2]
Returns the memory representation of the underlying bit representation as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should use
to_be_bytes or to_le_bytes, as appropriate,
instead.
§Examples
let bytes = bf16::from_f32(12.5).to_ne_bytes();
assert_eq!(bytes, if cfg!(target_endian = "big") {
[0x41, 0x48]
} else {
[0x48, 0x41]
});sourcepub const fn from_le_bytes(bytes: [u8; 2]) -> bf16
pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16
Creates a floating point value from its representation as a byte array in little endian.
§Examples
let value = bf16::from_le_bytes([0x48, 0x41]);
assert_eq!(value, bf16::from_f32(12.5));sourcepub const fn from_be_bytes(bytes: [u8; 2]) -> bf16
pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16
Creates a floating point value from its representation as a byte array in big endian.
§Examples
let value = bf16::from_be_bytes([0x41, 0x48]);
assert_eq!(value, bf16::from_f32(12.5));sourcepub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16
pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16
Creates a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code likely wants to use
from_be_bytes or from_le_bytes, as
appropriate instead.
§Examples
let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") {
[0x41, 0x48]
} else {
[0x48, 0x41]
});
assert_eq!(value, bf16::from_f32(12.5));sourcepub const fn to_f32_const(self) -> f32
pub const fn to_f32_const(self) -> f32
sourcepub const fn to_f64_const(self) -> f64
pub const fn to_f64_const(self) -> f64
sourcepub const fn is_nan(self) -> bool
pub const fn is_nan(self) -> bool
Returns true if this value is NaN and false otherwise.
§Examples
let nan = bf16::NAN;
let f = bf16::from_f32(7.0_f32);
assert!(nan.is_nan());
assert!(!f.is_nan());sourcepub const fn is_infinite(self) -> bool
pub const fn is_infinite(self) -> bool
Returns true if this value is ±∞ and false otherwise.
§Examples
let f = bf16::from_f32(7.0f32);
let inf = bf16::INFINITY;
let neg_inf = bf16::NEG_INFINITY;
let nan = bf16::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());sourcepub const fn is_finite(self) -> bool
pub const fn is_finite(self) -> bool
Returns true if this number is neither infinite nor NaN.
§Examples
let f = bf16::from_f32(7.0f32);
let inf = bf16::INFINITY;
let neg_inf = bf16::NEG_INFINITY;
let nan = bf16::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());sourcepub const fn is_normal(self) -> bool
pub const fn is_normal(self) -> bool
Returns true if the number is neither zero, infinite, subnormal, or NaN.
§Examples
let min = bf16::MIN_POSITIVE;
let max = bf16::MAX;
let lower_than_min = bf16::from_f32(1.0e-39_f32);
let zero = bf16::from_f32(0.0_f32);
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!bf16::NAN.is_normal());
assert!(!bf16::INFINITY.is_normal());
// Values between 0 and `min` are subnormal.
assert!(!lower_than_min.is_normal());sourcepub const fn classify(self) -> FpCategory
pub const fn classify(self) -> FpCategory
Returns the floating point category of the number.
If only one property is going to be tested, it is generally faster to use the specific predicate instead.
§Examples
use std::num::FpCategory;
let num = bf16::from_f32(12.4_f32);
let inf = bf16::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);sourcepub const fn signum(self) -> bf16
pub const fn signum(self) -> bf16
Returns a number that represents the sign of self.
- 1.0 if the number is positive, +0.0 or
INFINITY - −1.0 if the number is negative, −0.0
or [NEG_INFINITY`]bf16::NEG_INFINITY NANif the number is NaN
§Examples
let f = bf16::from_f32(3.5_f32);
assert_eq!(f.signum(), bf16::from_f32(1.0));
assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
assert!(bf16::NAN.signum().is_nan());sourcepub const fn is_sign_positive(self) -> bool
pub const fn is_sign_positive(self) -> bool
Returns true if and only if self has a positive sign, including +0.0, NaNs with a
positive sign bit and +∞.
§Examples
let nan = bf16::NAN;
let f = bf16::from_f32(7.0_f32);
let g = bf16::from_f32(-7.0_f32);
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// NaN can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());sourcepub const fn is_sign_negative(self) -> bool
pub const fn is_sign_negative(self) -> bool
Returns true if and only if self has a negative sign, including −0.0, NaNs with a
negative sign bit and −∞.
§Examples
let nan = bf16::NAN;
let f = bf16::from_f32(7.0f32);
let g = bf16::from_f32(-7.0f32);
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// NaN can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());sourcepub const fn copysign(self, sign: bf16) -> bf16
pub const fn copysign(self, sign: bf16) -> bf16
Returns a number composed of the magnitude of self and the sign of sign.
Equal to self if the sign of self and sign are the same, otherwise equal to -self.
If self is NaN, then NaN with the sign of sign is returned.
§Examples
let f = bf16::from_f32(3.5);
assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());sourcepub fn max(self, other: bf16) -> bf16
pub fn max(self, other: bf16) -> bf16
Returns the maximum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
§Examples
let x = bf16::from_f32(1.0);
let y = bf16::from_f32(2.0);
assert_eq!(x.max(y), y);sourcepub fn min(self, other: bf16) -> bf16
pub fn min(self, other: bf16) -> bf16
Returns the minimum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
§Examples
let x = bf16::from_f32(1.0);
let y = bf16::from_f32(2.0);
assert_eq!(x.min(y), x);sourcepub fn clamp(self, min: bf16, max: bf16) -> bf16
pub fn clamp(self, min: bf16, max: bf16) -> bf16
Restrict a value to a certain interval unless it is NaN.
Returns max if self is greater than max, and min if self is less than min.
Otherwise this returns self.
Note that this function returns NaN if the initial value was NaN as well.
§Panics
Panics if min > max, min is NaN, or max is NaN.
§Examples
assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());sourcepub fn total_cmp(&self, other: &bf16) -> Ordering
pub fn total_cmp(&self, other: &bf16) -> Ordering
Returns the ordering between self and other.
Unlike the standard partial comparison between floating point numbers,
this comparison always produces an ordering in accordance to
the totalOrder predicate as defined in the IEEE 754 (2008 revision)
floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
- negative signaling NaN
- negative infinity
- negative numbers
- negative subnormal numbers
- negative zero
- positive zero
- positive subnormal numbers
- positive numbers
- positive infinity
- positive signaling NaN
- positive quiet NaN.
The ordering established by this function does not always agree with the
PartialOrd and PartialEq implementations of bf16. For example,
they consider negative and positive zero equal, while total_cmp
doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
§Examples
let mut v: Vec<bf16> = vec![];
v.push(bf16::ONE);
v.push(bf16::INFINITY);
v.push(bf16::NEG_INFINITY);
v.push(bf16::NAN);
v.push(bf16::MAX_SUBNORMAL);
v.push(-bf16::MAX_SUBNORMAL);
v.push(bf16::ZERO);
v.push(bf16::NEG_ZERO);
v.push(bf16::NEG_ONE);
v.push(bf16::MIN_POSITIVE);
v.sort_by(|a, b| a.total_cmp(&b));
assert!(v
.into_iter()
.zip(
[
bf16::NEG_INFINITY,
bf16::NEG_ONE,
-bf16::MAX_SUBNORMAL,
bf16::NEG_ZERO,
bf16::ZERO,
bf16::MAX_SUBNORMAL,
bf16::MIN_POSITIVE,
bf16::ONE,
bf16::INFINITY,
bf16::NAN
]
.iter()
)
.all(|(a, b)| a.to_bits() == b.to_bits()));sourcepub fn serialize_as_f32<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
pub fn serialize_as_f32<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
Alternate serialize adapter for serializing as a float.
By default, bf16 serializes as a newtype of u16. This is an alternate serialize
implementation that serializes as an f32 value. It is designed for use with
serialize_with serde attributes. Deserialization from f32 values is already supported by
the default deserialize implementation.
§Examples
A demonstration on how to use this adapater:
use serde::{Serialize, Deserialize};
use half::bf16;
#[derive(Serialize, Deserialize)]
struct MyStruct {
#[serde(serialize_with = "bf16::serialize_as_f32")]
value: bf16 // Will be serialized as f32 instead of u16
}sourcepub fn serialize_as_string<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
pub fn serialize_as_string<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
Alternate serialize adapter for serializing as a string.
By default, bf16 serializes as a newtype of u16. This is an alternate serialize
implementation that serializes as a string value. It is designed for use with
serialize_with serde attributes. Deserialization from string values is already supported
by the default deserialize implementation.
§Examples
A demonstration on how to use this adapater:
use serde::{Serialize, Deserialize};
use half::bf16;
#[derive(Serialize, Deserialize)]
struct MyStruct {
#[serde(serialize_with = "bf16::serialize_as_string")]
value: bf16 // Will be serialized as a string instead of u16
}sourcepub const EPSILON: bf16 = _
pub const EPSILON: bf16 = _
bf16
machine epsilon value
This is the difference between 1.0 and the next largest representable number.
sourcepub const MANTISSA_DIGITS: u32 = 8u32
pub const MANTISSA_DIGITS: u32 = 8u32
Number of bf16 significant digits in base 2
sourcepub const MAX_10_EXP: i32 = 38i32
pub const MAX_10_EXP: i32 = 38i32
Maximum possible bf16 power of 10 exponent
sourcepub const MIN_10_EXP: i32 = -37i32
pub const MIN_10_EXP: i32 = -37i32
Minimum possible normal bf16 power of 10 exponent
sourcepub const MIN_EXP: i32 = -125i32
pub const MIN_EXP: i32 = -125i32
One greater than the minimum possible normal bf16 power of 2 exponent
sourcepub const MIN_POSITIVE: bf16 = _
pub const MIN_POSITIVE: bf16 = _
Smallest positive normal bf16 value
sourcepub const NEG_INFINITY: bf16 = _
pub const NEG_INFINITY: bf16 = _
bf16 negative infinity (-∞).
sourcepub const MIN_POSITIVE_SUBNORMAL: bf16 = _
pub const MIN_POSITIVE_SUBNORMAL: bf16 = _
Minimum positive subnormal bf16 value
sourcepub const MAX_SUBNORMAL: bf16 = _
pub const MAX_SUBNORMAL: bf16 = _
Maximum subnormal bf16 value
sourcepub const FRAC_1_SQRT_2: bf16 = _
pub const FRAC_1_SQRT_2: bf16 = _
bf16 1/√2
sourcepub const FRAC_2_SQRT_PI: bf16 = _
pub const FRAC_2_SQRT_PI: bf16 = _
bf16 2/√π
Trait Implementations§
source§impl AddAssign<&bf16> for bf16
impl AddAssign<&bf16> for bf16
source§fn add_assign(&mut self, rhs: &bf16)
fn add_assign(&mut self, rhs: &bf16)
+= operation. Read moresource§impl AddAssign for bf16
impl AddAssign for bf16
source§fn add_assign(&mut self, rhs: bf16)
fn add_assign(&mut self, rhs: bf16)
+= operation. Read moresource§impl AsPrimitive<bf16> for bf16
impl AsPrimitive<bf16> for bf16
source§impl AsPrimitive<bf16> for f16
impl AsPrimitive<bf16> for f16
source§impl AsPrimitive<f16> for bf16
impl AsPrimitive<f16> for bf16
source§impl AsPrimitive<f32> for bf16
impl AsPrimitive<f32> for bf16
source§impl AsPrimitive<f64> for bf16
impl AsPrimitive<f64> for bf16
source§impl AsPrimitive<i16> for bf16
impl AsPrimitive<i16> for bf16
source§impl AsPrimitive<i32> for bf16
impl AsPrimitive<i32> for bf16
source§impl AsPrimitive<i64> for bf16
impl AsPrimitive<i64> for bf16
source§impl AsPrimitive<i8> for bf16
impl AsPrimitive<i8> for bf16
source§impl AsPrimitive<isize> for bf16
impl AsPrimitive<isize> for bf16
source§impl AsPrimitive<u16> for bf16
impl AsPrimitive<u16> for bf16
source§impl AsPrimitive<u32> for bf16
impl AsPrimitive<u32> for bf16
source§impl AsPrimitive<u64> for bf16
impl AsPrimitive<u64> for bf16
source§impl AsPrimitive<u8> for bf16
impl AsPrimitive<u8> for bf16
source§impl AsPrimitive<usize> for bf16
impl AsPrimitive<usize> for bf16
source§impl<'de> Deserialize<'de> for bf16
impl<'de> Deserialize<'de> for bf16
source§fn deserialize<D>(
deserializer: D
) -> Result<bf16, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D
) -> Result<bf16, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
source§impl DivAssign<&bf16> for bf16
impl DivAssign<&bf16> for bf16
source§fn div_assign(&mut self, rhs: &bf16)
fn div_assign(&mut self, rhs: &bf16)
/= operation. Read moresource§impl DivAssign for bf16
impl DivAssign for bf16
source§fn div_assign(&mut self, rhs: bf16)
fn div_assign(&mut self, rhs: bf16)
/= operation. Read moresource§impl ElementComparison for bf16
impl ElementComparison for bf16
source§impl ElementConversion for bf16
impl ElementConversion for bf16
source§impl ElementPrecision for bf16
impl ElementPrecision for bf16
source§impl ElementRandom for bf16
impl ElementRandom for bf16
source§impl Float for bf16
impl Float for bf16
source§fn neg_infinity() -> bf16
fn neg_infinity() -> bf16
source§fn min_value() -> bf16
fn min_value() -> bf16
source§fn min_positive_value() -> bf16
fn min_positive_value() -> bf16
source§fn max_value() -> bf16
fn max_value() -> bf16
source§fn is_infinite(self) -> bool
fn is_infinite(self) -> bool
true if this value is positive infinity or negative infinity and
false otherwise. Read moresource§fn classify(self) -> FpCategory
fn classify(self) -> FpCategory
source§fn ceil(self) -> bf16
fn ceil(self) -> bf16
source§fn round(self) -> bf16
fn round(self) -> bf16
0.0. Read moresource§fn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
source§fn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
true if self is negative, including -0.0,
Float::neg_infinity(), and -Float::nan(). Read moresource§fn mul_add(self, a: bf16, b: bf16) -> bf16
fn mul_add(self, a: bf16, b: bf16) -> bf16
(self * a) + b with only one rounding
error, yielding a more accurate result than an unfused multiply-add. Read moresource§fn log(self, base: bf16) -> bf16
fn log(self, base: bf16) -> bf16
source§fn to_degrees(self) -> bf16
fn to_degrees(self) -> bf16
source§fn to_radians(self) -> bf16
fn to_radians(self) -> bf16
source§fn hypot(self, other: bf16) -> bf16
fn hypot(self, other: bf16) -> bf16
x and y. Read moresource§fn asin(self) -> bf16
fn asin(self) -> bf16
source§fn acos(self) -> bf16
fn acos(self) -> bf16
source§fn atan(self) -> bf16
fn atan(self) -> bf16
source§fn exp_m1(self) -> bf16
fn exp_m1(self) -> bf16
e^(self) - 1 in a way that is accurate even if the
number is close to zero. Read moresource§fn ln_1p(self) -> bf16
fn ln_1p(self) -> bf16
ln(1+n) (natural logarithm) more accurately than if
the operations were performed separately. Read moresource§impl FloatConst for bf16
impl FloatConst for bf16
source§fn FRAC_1_SQRT_2() -> bf16
fn FRAC_1_SQRT_2() -> bf16
1.0 / sqrt(2.0).source§fn FRAC_2_SQRT_PI() -> bf16
fn FRAC_2_SQRT_PI() -> bf16
2.0 / sqrt(π).source§impl FloatCore for bf16
impl FloatCore for bf16
source§fn neg_infinity() -> bf16
fn neg_infinity() -> bf16
source§fn min_value() -> bf16
fn min_value() -> bf16
source§fn min_positive_value() -> bf16
fn min_positive_value() -> bf16
source§fn max_value() -> bf16
fn max_value() -> bf16
source§fn is_infinite(self) -> bool
fn is_infinite(self) -> bool
true if the number is infinite. Read moresource§fn is_normal(self) -> bool
fn is_normal(self) -> bool
true if the number is neither zero, infinite, subnormal or NaN. Read moresource§fn classify(self) -> FpCategory
fn classify(self) -> FpCategory
source§fn ceil(self) -> bf16
fn ceil(self) -> bf16
source§fn round(self) -> bf16
fn round(self) -> bf16
0.0. Read moresource§fn abs(self) -> bf16
fn abs(self) -> bf16
self. Returns FloatCore::nan() if the
number is FloatCore::nan(). Read moresource§fn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
true if self is positive, including +0.0 and
FloatCore::infinity(), and FloatCore::nan(). Read moresource§fn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
true if self is negative, including -0.0 and
FloatCore::neg_infinity(), and -FloatCore::nan(). Read moresource§fn recip(self) -> bf16
fn recip(self) -> bf16
source§fn to_degrees(self) -> bf16
fn to_degrees(self) -> bf16
source§fn to_radians(self) -> bf16
fn to_radians(self) -> bf16
source§impl FromPrimitive for bf16
impl FromPrimitive for bf16
source§fn from_i64(n: i64) -> Option<bf16>
fn from_i64(n: i64) -> Option<bf16>
i64 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u64(n: u64) -> Option<bf16>
fn from_u64(n: u64) -> Option<bf16>
u64 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i8(n: i8) -> Option<bf16>
fn from_i8(n: i8) -> Option<bf16>
i8 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u8(n: u8) -> Option<bf16>
fn from_u8(n: u8) -> Option<bf16>
u8 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i16(n: i16) -> Option<bf16>
fn from_i16(n: i16) -> Option<bf16>
i16 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u16(n: u16) -> Option<bf16>
fn from_u16(n: u16) -> Option<bf16>
u16 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i32(n: i32) -> Option<bf16>
fn from_i32(n: i32) -> Option<bf16>
i32 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_u32(n: u32) -> Option<bf16>
fn from_u32(n: u32) -> Option<bf16>
u32 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_f32(n: f32) -> Option<bf16>
fn from_f32(n: f32) -> Option<bf16>
f32 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_f64(n: f64) -> Option<bf16>
fn from_f64(n: f64) -> Option<bf16>
f64 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned. Read moresource§fn from_isize(n: isize) -> Option<Self>
fn from_isize(n: isize) -> Option<Self>
isize to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§fn from_i128(n: i128) -> Option<Self>
fn from_i128(n: i128) -> Option<Self>
i128 to return an optional value of this type. If the
value cannot be represented by this type, then None is returned. Read moresource§fn from_usize(n: usize) -> Option<Self>
fn from_usize(n: usize) -> Option<Self>
usize to return an optional value of this type. If the
value cannot be represented by this type, then None is returned.source§impl MulAssign<&bf16> for bf16
impl MulAssign<&bf16> for bf16
source§fn mul_assign(&mut self, rhs: &bf16)
fn mul_assign(&mut self, rhs: &bf16)
*= operation. Read moresource§impl MulAssign for bf16
impl MulAssign for bf16
source§fn mul_assign(&mut self, rhs: bf16)
fn mul_assign(&mut self, rhs: bf16)
*= operation. Read moresource§impl Num for bf16
impl Num for bf16
type FromStrRadixErr = <f32 as Num>::FromStrRadixErr
source§impl PartialEq for bf16
impl PartialEq for bf16
source§impl PartialOrd for bf16
impl PartialOrd for bf16
source§impl RemAssign<&bf16> for bf16
impl RemAssign<&bf16> for bf16
source§fn rem_assign(&mut self, rhs: &bf16)
fn rem_assign(&mut self, rhs: &bf16)
%= operation. Read moresource§impl RemAssign for bf16
impl RemAssign for bf16
source§fn rem_assign(&mut self, rhs: bf16)
fn rem_assign(&mut self, rhs: bf16)
%= operation. Read moresource§impl Serialize for bf16
impl Serialize for bf16
source§fn serialize<__S>(
&self,
__serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
source§impl SubAssign<&bf16> for bf16
impl SubAssign<&bf16> for bf16
source§fn sub_assign(&mut self, rhs: &bf16)
fn sub_assign(&mut self, rhs: &bf16)
-= operation. Read moresource§impl SubAssign for bf16
impl SubAssign for bf16
source§fn sub_assign(&mut self, rhs: bf16)
fn sub_assign(&mut self, rhs: bf16)
-= operation. Read moresource§impl ToPrimitive for bf16
impl ToPrimitive for bf16
source§fn to_i64(&self) -> Option<i64>
fn to_i64(&self) -> Option<i64>
self to an i64. If the value cannot be
represented by an i64, then None is returned.source§fn to_u64(&self) -> Option<u64>
fn to_u64(&self) -> Option<u64>
self to a u64. If the value cannot be
represented by a u64, then None is returned.source§fn to_i8(&self) -> Option<i8>
fn to_i8(&self) -> Option<i8>
self to an i8. If the value cannot be
represented by an i8, then None is returned.source§fn to_u8(&self) -> Option<u8>
fn to_u8(&self) -> Option<u8>
self to a u8. If the value cannot be
represented by a u8, then None is returned.source§fn to_i16(&self) -> Option<i16>
fn to_i16(&self) -> Option<i16>
self to an i16. If the value cannot be
represented by an i16, then None is returned.source§fn to_u16(&self) -> Option<u16>
fn to_u16(&self) -> Option<u16>
self to a u16. If the value cannot be
represented by a u16, then None is returned.source§fn to_i32(&self) -> Option<i32>
fn to_i32(&self) -> Option<i32>
self to an i32. If the value cannot be
represented by an i32, then None is returned.source§fn to_u32(&self) -> Option<u32>
fn to_u32(&self) -> Option<u32>
self to a u32. If the value cannot be
represented by a u32, then None is returned.source§fn to_f32(&self) -> Option<f32>
fn to_f32(&self) -> Option<f32>
self to an f32. Overflows may map to positive
or negative inifinity, otherwise None is returned if the value cannot
be represented by an f32.source§fn to_f64(&self) -> Option<f64>
fn to_f64(&self) -> Option<f64>
self to an f64. Overflows may map to positive
or negative inifinity, otherwise None is returned if the value cannot
be represented by an f64. Read moresource§fn to_isize(&self) -> Option<isize>
fn to_isize(&self) -> Option<isize>
self to an isize. If the value cannot be
represented by an isize, then None is returned.source§fn to_i128(&self) -> Option<i128>
fn to_i128(&self) -> Option<i128>
self to an i128. If the value cannot be
represented by an i128 (i64 under the default implementation), then
None is returned. Read moreimpl Copy for bf16
impl Element for bf16
Auto Trait Implementations§
impl Freeze for bf16
impl RefUnwindSafe for bf16
impl Send for bf16
impl Sync for bf16
impl Unpin for bf16
impl UnwindSafe for bf16
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> LowerBounded for Twhere
T: Bounded,
impl<T> LowerBounded for Twhere
T: Bounded,
source§impl<T> Real for Twhere
T: Float,
impl<T> Real for Twhere
T: Float,
source§fn min_positive_value() -> T
fn min_positive_value() -> T
source§fn round(self) -> T
fn round(self) -> T
0.0. Read moresource§fn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
true if self is positive, including +0.0,
Float::infinity(), and with newer versions of Rust f64::NAN. Read moresource§fn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
true if self is negative, including -0.0,
Float::neg_infinity(), and with newer versions of Rust -f64::NAN. Read moresource§fn mul_add(self, a: T, b: T) -> T
fn mul_add(self, a: T, b: T) -> T
(self * a) + b with only one rounding
error, yielding a more accurate result than an unfused multiply-add. Read moresource§fn log(self, base: T) -> T
fn log(self, base: T) -> T
source§fn to_degrees(self) -> T
fn to_degrees(self) -> T
source§fn to_radians(self) -> T
fn to_radians(self) -> T
source§fn hypot(self, other: T) -> T
fn hypot(self, other: T) -> T
x and y. Read moresource§fn asin(self) -> T
fn asin(self) -> T
source§fn acos(self) -> T
fn acos(self) -> T
source§fn atan(self) -> T
fn atan(self) -> T
source§fn exp_m1(self) -> T
fn exp_m1(self) -> T
e^(self) - 1 in a way that is accurate even if the
number is close to zero. Read more