1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#![no_std]

mod size_align;

use core::cell::UnsafeCell;
use core::mem::{self, MaybeUninit};
use core::ptr;

pub use size_align::{AlignOf, SizeOf};

/// A bump allocator over an arbitrary region of memory.
pub struct BumpInto<'a> {
    array: UnsafeCell<&'a mut [MaybeUninit<u8>]>,
}

impl<'this, 'a: 'this> BumpInto<'a> {
    /// Creates a new `BumpInto`, wrapping a slice of MaybeUninit<u8>.
    pub fn new(array: &'a mut [MaybeUninit<u8>]) -> Self {
        BumpInto {
            array: UnsafeCell::new(array),
        }
    }

    /// Tries to allocate `size` bytes with alignment `align`.
    /// Returns a null pointer on failure.
    pub fn alloc_space<S: Into<usize>, A: Into<usize>>(
        &'this self,
        size: S,
        align: A,
    ) -> *mut MaybeUninit<u8> {
        let size = size.into();
        let align = align.into();

        if size == 0 {
            // optimization for zero-sized types, as pointers to
            // such types don't have to be distinct in Rust
            return align as *mut MaybeUninit<u8>;
        }

        if size > isize::max_value() as usize {
            // Rust doesn't really support allocations this big,
            // and there's no way you'd want to put one in an
            // inline bump heap anyway. it's easier if we put
            // this check here. note that other parts of the code
            // do depend on this check being in this method!
            return ptr::null_mut();
        }

        let array = unsafe { &mut *self.array.get() };

        // since we have to do math to align our output properly,
        // we use `usize` instead of pointers
        let array_start = *array as *mut [MaybeUninit<u8>] as *mut MaybeUninit<u8> as usize;
        let current_end = array_start + array.len();

        // the highest address with enough space to store `size` bytes
        let preferred_ptr = match current_end.checked_sub(size) {
            Some(preferred_ptr) => preferred_ptr,
            None => return ptr::null_mut(),
        };

        // round down to the nearest multiple of `align`
        let aligned_ptr = (preferred_ptr / align) * align;

        if aligned_ptr < array_start {
            // not enough space -- do nothing and return null
            ptr::null_mut()
        } else {
            // bump the bump pointer and return the allocation
            *array = &mut array[..aligned_ptr - array_start];

            aligned_ptr as *mut MaybeUninit<u8>
        }
    }

    /// Tries to allocate enough space to store a `T`.
    /// Returns a properly aligned pointer to uninitialized `T` if
    /// there was enough space; otherwise returns a null pointer.
    pub fn alloc_space_for<T>(&'this self) -> *mut T {
        self.alloc_space(SizeOf::<T>::new(), AlignOf::<T>::new()) as *mut T
    }

    /// Tries to allocate enough space to store `count` number of `T`.
    /// Returns a properly aligned pointer to uninitialized `T` if
    /// there was enough space; otherwise returns a null pointer.
    pub fn alloc_space_for_n<T>(&'this self, count: usize) -> *mut T {
        let size = mem::size_of::<T>().checked_mul(count);

        match size {
            Some(size) => self.alloc_space(size, AlignOf::<T>::new()) as *mut T,
            None => ptr::null_mut(),
        }
    }

    /// Tries to allocate enough space to store a `T` and place `x` there.
    ///
    /// On success (i.e. if there was enough space) produces a mutable
    /// reference to `x` with the lifetime of this `BumpInto`.
    ///
    /// On failure, produces `x`.
    pub fn alloc<T>(&'this self, x: T) -> Result<&'this mut T, T> {
        let pointer = self.alloc_space_for::<T>();

        if pointer.is_null() {
            return Err(x);
        }

        unsafe {
            ptr::write(pointer, x);

            Ok(&mut *pointer)
        }
    }

    /// Tries to allocate enough space to store a `T` and place the result
    /// of calling `f` there.
    ///
    /// On success (i.e. if there was enough space) produces a mutable
    /// reference to the stored result with the lifetime of this `BumpInto`.
    pub fn alloc_with<T, F: FnOnce() -> T>(&'this self, f: F) -> Option<&'this mut T> {
        #[inline(always)]
        unsafe fn eval_and_write<T, F: FnOnce() -> T>(pointer: *mut T, f: F) {
            // this is an optimization borrowed from bumpalo by fitzgen
            // it's meant to help the compiler realize it can avoid a copy by
            // evaluating `f` directly into the allocated space
            ptr::write(pointer, f());
        }

        let pointer = self.alloc_space_for::<T>();

        if pointer.is_null() {
            return None;
        }

        unsafe {
            eval_and_write(pointer, f);

            Some(&mut *pointer)
        }
    }

    /// Tries to allocate enough space to store a copy of `xs` and copy
    /// `xs` into it.
    ///
    /// On success (i.e. if there was enough space) produces a mutable
    /// reference to the copy with the lifetime of this `BumpInto`.
    pub fn alloc_n<T: Copy>(&'this self, xs: &[T]) -> Option<&'this mut [T]> {
        let pointer = self.alloc_space(mem::size_of_val(xs), AlignOf::<T>::new()) as *mut T;

        if pointer.is_null() {
            return None;
        }

        unsafe {
            for (index, &x) in xs.iter().enumerate() {
                ptr::write(pointer.add(index), x);
            }

            Some(core::slice::from_raw_parts_mut(pointer, xs.len()))
        }
    }

    /// Tries to allocate enough space to store `count` number of `T` and
    /// fill it with the values produced by `iter.into_iter()`.
    ///
    /// On success (i.e. if there was enough space) produces a mutable
    /// reference to the stored results as a slice, with the lifetime of
    /// this `BumpInto`.
    ///
    /// If the iterator ends before producing enough items to fill the
    /// allocated space, the same amount of space is allocated, but the
    /// returned slice is just long enough to hold the items that were
    /// actually produced.
    pub fn alloc_n_with<T, I: IntoIterator<Item = T>>(
        &'this self,
        count: usize,
        iter: I,
    ) -> Option<&'this mut [T]> {
        #[inline(always)]
        unsafe fn iter_and_write<T, I: Iterator<Item = T>>(pointer: *mut T, mut iter: I) -> bool {
            match iter.next() {
                Some(item) => {
                    ptr::write(pointer, item);

                    false
                }
                None => true,
            }
        }

        let pointer = self.alloc_space_for_n::<T>(count);

        if pointer.is_null() {
            return None;
        }

        let mut iter = iter.into_iter();

        unsafe {
            for index in 0..count {
                if iter_and_write(pointer.add(index), &mut iter) {
                    // iterator ended before we could fill the whole space.
                    return Some(core::slice::from_raw_parts_mut(pointer, index));
                }
            }

            Some(core::slice::from_raw_parts_mut(pointer, count))
        }
    }
}

/// Creates an uninitialized array of `MaybeUninit<u8>` on the stack,
/// suitable for taking a slice of to pass into `BumpInto::new`.
#[macro_export]
macro_rules! space {
    ($capacity:expr) => {{
        extern crate core;

        unsafe {
            core::mem::MaybeUninit::<[core::mem::MaybeUninit<u8>; $capacity]>::uninit()
                .assume_init()
        }
    }};
}

/// Creates a zeroed array of `MaybeUninit<u8>` on the stack,
/// suitable for taking a slice of to pass into `BumpInto::new`.
#[macro_export]
macro_rules! space_zeroed {
    ($capacity:expr) => {{
        extern crate core;

        unsafe {
            core::mem::MaybeUninit::<[core::mem::MaybeUninit<u8>; $capacity]>::zeroed()
                .assume_init()
        }
    }};
}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn alloc() {
        let mut space = space!(32);
        let bump_into = BumpInto::new(&mut space[..]);

        let something1 = bump_into.alloc(123u64).expect("allocation 1 failed");

        assert_eq!(*something1, 123u64);

        let something2 = bump_into.alloc(7775u16).expect("allocation 2 failed");

        assert_eq!(*something1, 123u64);
        assert_eq!(*something2, 7775u16);

        let something3 = bump_into
            .alloc_with(|| 251222u64)
            .expect("allocation 3 failed");

        assert_eq!(*something1, 123u64);
        assert_eq!(*something2, 7775u16);
        assert_eq!(*something3, 251222u64);

        if bump_into.alloc_with(|| [0; 128]).is_some() {
            panic!("allocation 4 succeeded");
        }

        let something5 = bump_into.alloc(123523u32).expect("allocation 5 failed");

        assert_eq!(*something1, 123u64);
        assert_eq!(*something2, 7775u16);
        assert_eq!(*something3, 251222u64);
        assert_eq!(*something5, 123523u32);
    }

    #[test]
    fn alloc_n() {
        let mut space = space!(192);
        let bump_into = BumpInto::new(&mut space[..]);

        let something1 = bump_into.alloc_n(&[1u32, 258909, 1000][..]).expect("allocation 1 failed");

        assert_eq!(something1, &[1u32, 258909, 1000][..]);

        let something2 = bump_into.alloc_n(&[1u64, 258909, 1000, 0][..]).expect("allocation 2 failed");

        assert_eq!(something1, &[1u32, 258909, 1000][..]);
        assert_eq!(something2, &[1u64, 258909, 1000, 0][..]);

        let something3 = bump_into.alloc_n_with(5, core::iter::repeat(61921u16)).expect("allocation 3 failed");

        assert_eq!(something1, &[1u32, 258909, 1000][..]);
        assert_eq!(something2, &[1u64, 258909, 1000, 0][..]);
        assert_eq!(something3, &[61921u16; 5][..]);

        let something4 = bump_into.alloc_n_with(6, core::iter::once(71u64)).expect("allocation 4 failed");

        assert_eq!(something1, &[1u32, 258909, 1000][..]);
        assert_eq!(something2, &[1u64, 258909, 1000, 0][..]);
        assert_eq!(something3, &[61921u16; 5][..]);
        assert_eq!(something4, &[71u64][..]);

        if bump_into.alloc_n_with::<u64, _>(100, None).is_some() {
            panic!("allocation 5 succeeded")
        }

        assert_eq!(something1, &[1u32, 258909, 1000][..]);
        assert_eq!(something2, &[1u64, 258909, 1000, 0][..]);
        assert_eq!(something3, &[61921u16; 5][..]);
        assert_eq!(something4, &[71u64][..]);

        let something6 = bump_into.alloc_n_with::<u64, _>(6, None).expect("allocation 6 failed");

        assert_eq!(something1, &[1u32, 258909, 1000][..]);
        assert_eq!(something2, &[1u64, 258909, 1000, 0][..]);
        assert_eq!(something3, &[61921u16; 5][..]);
        assert_eq!(something4, &[71u64][..]);
        assert_eq!(something6, &[]);
    }

    #[test]
    fn readme_example() {
        // allocate 64 bytes of uninitialized space on the stack
        let mut bump_into_space = space!(64);
        let bump_into = BumpInto::new(&mut bump_into_space[..]);

        // allocating an object produces a mutable reference with
        // the same lifetime as the `BumpInto` instance, or `None`
        // if there isn't enough space
        let number: &mut u64 = bump_into
            .alloc_with(|| 123)
            .expect("not enough space");
        assert_eq!(*number, 123);
        *number = 50000;
        assert_eq!(*number, 50000);

        // slices can be allocated as well
        let slice: &mut [u16] = bump_into
            .alloc_n_with(5, core::iter::repeat(10))
            .expect("not enough space");
        assert_eq!(slice, &[10; 5]);
        slice[2] = 100;
        assert_eq!(slice, &[10, 10, 100, 10, 10]);
    }
}