1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! # bulk-gcd
//!
//! This crate computes GCD of each integer in moduli list with the product of
//! all integers in the same list using [fast algorithm][bernstein] by
//! D. Bernstein.
//!
//! See: [this paper][that paper] for more details and motivation.
//!
//! Usage example:
//! ```rust
//! extern crate bulk_gcd;
//! extern crate rug;
//!
//! use rug::Integer;
//!
//! let moduli = [
//!     Integer::from(15),
//!     Integer::from(35),
//!     Integer::from(23),
//! ];
//!
//! let result = bulk_gcd::compute(&moduli).unwrap();
//!
//! assert_eq!(
//!     result,
//!     vec![
//!         Some(Integer::from(5)),
//!         Some(Integer::from(5)),
//!         None,
//!     ]
//! );
//! ```
//!
//! [bernstein]: https://cr.yp.to/factorization/smoothparts-20040510.pdf
//! [that paper]: https://factorable.net/weakkeys12.conference.pdf
extern crate rayon;
extern crate rug;

#[macro_use]
extern crate log;
extern crate env_logger;

mod utils;

use rayon::prelude::*;
use rug::Integer;
use std::error::Error;
use std::fmt;
use std::fmt::Display;
use utils::*;

/// Possible computation errors
#[derive(Debug, PartialEq)]
pub enum ComputeError {
    /// Returned when `compute()` is called with 0 or 1 moduli
    /// Minimum 2 moduli are required for meaningful operation of the function.
    NotEnoughModuli,
}

impl Display for ComputeError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ComputeError: {}", self.description())
    }
}

impl Error for ComputeError {
    fn description(&self) -> &str {
        match self {
            ComputeError::NotEnoughModuli => "Not enough moduli",
        }
    }
}

pub type ComputeResult = Result<Vec<Option<Integer>>, ComputeError>;

struct ProductTree {
    levels: Vec<Vec<Integer>>,
}

fn compute_product_tree(moduli: Vec<Integer>) -> ProductTree {
    // Root
    if moduli.len() == 1 {
        return ProductTree {
            levels: vec![moduli],
        };
    }

    // Node
    let level = (0..(moduli.len() / 2))
        .into_par_iter()
        .map(|i| Integer::from(&moduli[i * 2] * &moduli[i * 2 + 1]))
        .collect();

    let mut res = compute_product_tree(level);
    res.levels.push(moduli);
    res
}

fn compute_remainders(tree: ProductTree) -> Option<Vec<Integer>> {
    let level_count = tree.levels.len() - 1;
    trace!("computing remainders for {} levels", level_count);

    tree.levels
        .into_iter()
        .enumerate()
        .fold(None, |maybe_parent, (level, current)| {
            let parent = match maybe_parent {
                None => {
                    return Some(current);
                }
                Some(parent) => parent,
            };

            trace!("computing remainder level {}/{}", level, level_count);
            let remainders = current
                .into_par_iter()
                .enumerate()
                .map(|(i, mut value)| {
                    // value = parent[i / 2] % (value ** 2)
                    value.square_mut();

                    &parent[i / 2] % value
                })
                .collect();

            Some(remainders)
        })
}

fn compute_gcds(remainders: &[Integer], moduli: &[Integer]) -> Vec<Integer> {
    trace!("computing quotients and gcd");
    remainders
        .par_iter()
        .zip(moduli.par_iter())
        .map(|(remainder, modulo)| {
            let quotient = Integer::from(remainder / modulo);
            quotient.gcd(modulo)
        })
        .collect()
}

/// Compute GCD of each integer in the `moduli` with all other integers in it.
///
/// Usage example:
/// ```rust
/// extern crate bulk_gcd;
/// extern crate rug;
///
/// use rug::Integer;
///
/// let moduli = [
///     Integer::from(15),
///     Integer::from(35),
///     Integer::from(23),
///     Integer::from(49),
/// ];
///
/// let result = bulk_gcd::compute(&moduli).unwrap();
///
/// assert_eq!(
///     result,
///     vec![
///         Some(Integer::from(5)),
///         Some(Integer::from(35)),
///         None,
///         Some(Integer::from(7)),
///     ]
/// );
/// ```
///
/// NOTE: Minimum 2 `moduli` are required for running the algorithm, otherwise
/// `NotEnoughModuli` error is returned:
///
/// ```rust
/// extern crate bulk_gcd;
/// extern crate rug;
///
/// use rug::Integer;
///
/// assert_eq!(
///     bulk_gcd::compute(&[]).unwrap_err(),
///     bulk_gcd::ComputeError::NotEnoughModuli
/// );
/// ```
///
pub fn compute(moduli: &[Integer]) -> ComputeResult {
    if moduli.len() < 2 {
        return Err(ComputeError::NotEnoughModuli);
    }

    // Pad to the power-of-two len
    let (padded_moduli, pad_size) = pad_ints(moduli.to_vec());
    trace!("added {} padding to moduli", pad_size);

    trace!("computing product tree");
    let tree = compute_product_tree(padded_moduli);
    let remainders = compute_remainders(tree);

    let gcds = compute_gcds(&unpad_ints(remainders.unwrap(), pad_size), moduli);

    Ok(gcds
        .into_iter()
        .map(|gcd| if gcd == 1 { None } else { Some(gcd) })
        .collect())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_should_fail_on_zero_moduli() {
        assert!(compute(&[]).is_err());
    }

    #[test]
    fn it_should_fail_on_single_moduli() {
        assert!(compute(&[Integer::new()]).is_err());
    }

    #[test]
    fn it_should_return_gcd_of_two_moduli() {
        let moduli = [Integer::from(6), Integer::from(15)];

        let result = compute(&moduli).unwrap();
        assert_eq!(
            result,
            vec![Some(Integer::from(3)), Some(Integer::from(3)),]
        );
    }

    #[test]
    fn it_should_find_gcd_for_many_moduli() {
        let moduli = vec![
            Integer::from(31 * 41),
            Integer::from(41),
            Integer::from(61),
            Integer::from(71 * 31),
            Integer::from(101 * 131),
            Integer::from(131 * 151),
        ];

        let result = compute(&moduli).unwrap();

        assert_eq!(
            result,
            vec![
                Some(Integer::from(31 * 41)),
                Some(Integer::from(41)),
                None,
                Some(Integer::from(31)),
                Some(Integer::from(131)),
                Some(Integer::from(131)),
            ]
        );
    }
}