1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
//! insertion sort algorithm.
//!
//! **O(N²)**

/**
Sort in ascending order using a insertion sort algorithm.

```
let mut nums = [1, 4, 2, 3, 5, 111, 234, 21, 13];
insertion::sort(&mut nums);
assert_eq!(nums, [1, 2, 3, 4, 5, 13, 21, 111, 234]);
```
*/
pub fn sort<T>(array: &mut [T])
where
    T: std::cmp::Ord + std::clone::Clone,
{
    sort_by(array, |l, r| l.cmp(r))
}

/** Sort in descending order using a insertion sort algorithm.

```
let mut nums = [1, 4, 2, 3, 5, 111, 234, 21, 13];
insertion::sort_reverse(&mut nums);
assert_eq!(nums, [234, 111, 21, 13, 5, 4, 3, 2, 1]);
```
*/
pub fn sort_reverse<T>(array: &mut [T])
where
    T: std::cmp::Ord + std::clone::Clone,
{
    sort_by(array, |l, r| l.cmp(r).reverse())
}

/**
It takes a comparator function to determine the order,
and sorts it using a insertion sort algorithm.

```
let mut nums = [1, 4, 2, 3, 5, 111, 234, 21, 13];
insertion::sort_by(&mut nums, |l, r| l.cmp(r));
assert_eq!(nums, [1, 2, 3, 4, 5, 13, 21, 111, 234]);
```
*/
pub fn sort_by<T, F>(array: &mut [T], compare: F)
where
    T: std::cmp::Ord + std::clone::Clone,
    F: Fn(&T, &T) -> std::cmp::Ordering,
{
    let mut start = 1;
    let end = array.len();

    while start != end {
        let target = array[start].clone();

        let mut back = start as isize - 1;

        while back >= 0 {
            if compare(&target, &array[back as usize]) == std::cmp::Ordering::Less {
                array[(back + 1) as usize] = array[back as usize].clone();
            } else {
                break;
            }

            back -= 1;
        }

        array[(back + 1) as usize] = target;

        start += 1;
    }
}