pub struct BTreeSet<T, C> { /* private fields */ }Expand description
A set based on a B-Tree.
See BTreeMap’s documentation for a detailed discussion of this collection’s performance benefits and drawbacks.
It is a logic error for an item to be modified in such a way that the item’s ordering relative
to any other item, as determined by the Ord trait, changes while it is in the set. This is
normally only possible through Cell, RefCell, global state, I/O, or unsafe code.
Implementations§
Source§impl<T, C> BTreeSet<T, C>
impl<T, C> BTreeSet<T, C>
Sourcepub fn new() -> Selfwhere
C: Default,
pub fn new() -> Selfwhere
C: Default,
Makes a new, empty BTreeSet.
§Example
use btree_slab::BTreeSet;
let mut set: BTreeSet<i32> = BTreeSet::new();Source§impl<T, C> BTreeSet<T, C>
impl<T, C> BTreeSet<T, C>
Sourcepub fn iter(&self) -> Iter<'_, T, C> ⓘ
pub fn iter(&self) -> Iter<'_, T, C> ⓘ
Gets an iterator that visits the values in the BTreeSet in ascending order.
§Examples
use btree_slab::BTreeSet;
let set: BTreeSet<usize> = [1, 2, 3].iter().cloned().collect();
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);Values returned by the iterator are returned in ascending order:
use btree_slab::BTreeSet;
let set: BTreeSet<usize> = [3, 1, 2].iter().cloned().collect();
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);Source§impl<T: Ord, C> BTreeSet<T, C>
impl<T: Ord, C> BTreeSet<T, C>
Sourcepub fn contains<Q>(&self, value: &Q) -> bool
pub fn contains<Q>(&self, value: &Q) -> bool
Returns true if the set contains a value.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Example
use btree_slab::BTreeSet;
let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);Sourcepub fn get<Q>(&self, value: &Q) -> Option<&T>
pub fn get<Q>(&self, value: &Q) -> Option<&T>
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Example
use btree_slab::BTreeSet;
let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);Sourcepub fn range<K, R>(&self, range: R) -> Range<'_, T, C> ⓘ
pub fn range<K, R>(&self, range: R) -> Range<'_, T, C> ⓘ
Constructs a double-ended iterator over a sub-range of elements in the set.
The simplest way is to use the range syntax min..max, thus range(min..max) will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>), so for example
range((Excluded(4), Included(10))) will yield a left-exclusive, right-inclusive
range from 4 to 10.
§Example
use btree_slab::BTreeSet;
use std::ops::Bound::Included;
let mut set = BTreeSet::new();
set.insert(3);
set.insert(5);
set.insert(8);
for &elem in set.range((Included(&4), Included(&8))) {
println!("{}", elem);
}
assert_eq!(Some(&5), set.range(4..).next());Sourcepub fn union<'a, D>(&'a self, other: &'a BTreeSet<T, D>) -> Union<'a, T, C, D> ⓘ
pub fn union<'a, D>(&'a self, other: &'a BTreeSet<T, D>) -> Union<'a, T, C, D> ⓘ
Visits the values representing the union,
i.e., all the values in self or other, without duplicates,
in ascending order.
§Example
use btree_slab::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
let mut b = BTreeSet::new();
b.insert(2);
let union: Vec<_> = a.union(&b).cloned().collect();
assert_eq!(union, [1, 2]);Sourcepub fn intersection<'a, D>(
&'a self,
other: &'a BTreeSet<T, D>,
) -> Intersection<'a, T, C, D> ⓘ
pub fn intersection<'a, D>( &'a self, other: &'a BTreeSet<T, D>, ) -> Intersection<'a, T, C, D> ⓘ
Visits the values representing the intersection,
i.e., the values that are both in self and other,
in ascending order.
§Example
use btree_slab::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);
let intersection: Vec<_> = a.intersection(&b).cloned().collect();
assert_eq!(intersection, [2]);Sourcepub fn difference<'a, D>(
&'a self,
other: &'a BTreeSet<T, D>,
) -> Difference<'a, T, C, D> ⓘ
pub fn difference<'a, D>( &'a self, other: &'a BTreeSet<T, D>, ) -> Difference<'a, T, C, D> ⓘ
Visits the values representing the difference,
i.e., the values that are in self but not in other,
in ascending order.
§Example
use btree_slab::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);
let diff: Vec<_> = a.difference(&b).cloned().collect();
assert_eq!(diff, [1]);Sourcepub fn symmetric_difference<'a, D>(
&'a self,
other: &'a BTreeSet<T, D>,
) -> SymmetricDifference<'a, T, C, D> ⓘ
pub fn symmetric_difference<'a, D>( &'a self, other: &'a BTreeSet<T, D>, ) -> SymmetricDifference<'a, T, C, D> ⓘ
Visits the values representing the symmetric difference,
i.e., the values that are in self or in other but not in both,
in ascending order.
§Example
use btree_slab::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);
let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect();
assert_eq!(sym_diff, [1, 3]);Sourcepub fn is_disjoint<D>(&self, other: &BTreeSet<T, D>) -> bool
pub fn is_disjoint<D>(&self, other: &BTreeSet<T, D>) -> bool
Returns true if self has no elements in common with other.
This is equivalent to checking for an empty intersection.
§Example
use btree_slab::BTreeSet;
let a: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = BTreeSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);Sourcepub fn is_subset<D>(&self, other: &BTreeSet<T, D>) -> bool
pub fn is_subset<D>(&self, other: &BTreeSet<T, D>) -> bool
Returns true if the set is a subset of another,
i.e., other contains at least all the values in self.
§Example
use btree_slab::BTreeSet;
let sup: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = BTreeSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);Sourcepub fn is_superset<D>(&self, other: &BTreeSet<T, D>) -> bool
pub fn is_superset<D>(&self, other: &BTreeSet<T, D>) -> bool
Returns true if the set is a superset of another,
i.e., self contains at least all the values in other.
§Example
use btree_slab::BTreeSet;
let sub: BTreeSet<_> = [1, 2].iter().cloned().collect();
let mut set = BTreeSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);Sourcepub fn first(&self) -> Option<&T>
pub fn first(&self) -> Option<&T>
Returns a reference to the first value in the set, if any. This value is always the minimum of all values in the set.
§Example
use btree_slab::BTreeSet;
let mut map = BTreeSet::new();
assert_eq!(map.first(), None);
map.insert(1);
assert_eq!(map.first(), Some(&1));
map.insert(2);
assert_eq!(map.first(), Some(&1));Sourcepub fn last(&self) -> Option<&T>
pub fn last(&self) -> Option<&T>
Returns a reference to the last value in the set, if any. This value is always the maximum of all values in the set.
§Example
use btree_slab::BTreeSet;
let mut map = BTreeSet::new();
assert_eq!(map.first(), None);
map.insert(1);
assert_eq!(map.last(), Some(&1));
map.insert(2);
assert_eq!(map.last(), Some(&2));Source§impl<T: Ord, C> BTreeSet<T, C>
impl<T: Ord, C> BTreeSet<T, C>
Sourcepub fn clear(&mut self)where
C: Clear,
pub fn clear(&mut self)where
C: Clear,
Clears the set, removing all values.
§Examples
use btree_slab::BTreeSet;
let mut v = BTreeSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());Sourcepub fn insert(&mut self, element: T) -> boolwhere
T: Ord,
pub fn insert(&mut self, element: T) -> boolwhere
T: Ord,
Adds a value to the set.
If the set did not have this value present, true is returned.
If the set did have this value present, false is returned, and the
entry is not updated. See the module-level documentation for more.
§Example
use btree_slab::BTreeSet;
let mut set = BTreeSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);Sourcepub fn remove<Q>(&mut self, value: &Q) -> bool
pub fn remove<Q>(&mut self, value: &Q) -> bool
Removes a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Example
use btree_slab::BTreeSet;
let mut set = BTreeSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);Sourcepub fn take<Q>(&mut self, value: &Q) -> Option<T>
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.
§Examples
use btree_slab::BTreeSet;
let mut set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);Sourcepub fn replace(&mut self, value: T) -> Option<T>
pub fn replace(&mut self, value: T) -> Option<T>
Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
§Example
use btree_slab::BTreeSet;
let mut set = BTreeSet::new();
set.insert(Vec::<i32>::new());
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);Sourcepub fn pop_first(&mut self) -> Option<T>
pub fn pop_first(&mut self) -> Option<T>
Removes the first value from the set and returns it, if any. The first value is always the minimum value in the set.
§Example
use btree_slab::BTreeSet;
let mut set = BTreeSet::new();
set.insert(1);
while let Some(n) = set.pop_first() {
assert_eq!(n, 1);
}
assert!(set.is_empty());Sourcepub fn pop_last(&mut self) -> Option<T>
pub fn pop_last(&mut self) -> Option<T>
Removes the last value from the set and returns it, if any. The last value is always the maximum value in the set.
§Example
use btree_slab::BTreeSet;
let mut set = BTreeSet::new();
set.insert(1);
while let Some(n) = set.pop_last() {
assert_eq!(n, 1);
}
assert!(set.is_empty());Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all elements e such that f(&e) returns false.
§Example
use btree_slab::BTreeSet;
let xs = [1, 2, 3, 4, 5, 6];
let mut set: BTreeSet<i32> = xs.iter().cloned().collect();
// Keep only the even numbers.
set.retain(|&k| k % 2 == 0);
assert!(set.iter().eq([2, 4, 6].iter()));Sourcepub fn append(&mut self, other: &mut Self)where
C: Default,
pub fn append(&mut self, other: &mut Self)where
C: Default,
Moves all elements from other into Self, leaving other empty.
§Example
use btree_slab::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
a.insert(3);
let mut b = BTreeSet::new();
b.insert(3);
b.insert(4);
b.insert(5);
a.append(&mut b);
assert_eq!(a.len(), 5);
assert_eq!(b.len(), 0);
assert!(a.contains(&1));
assert!(a.contains(&2));
assert!(a.contains(&3));
assert!(a.contains(&4));
assert!(a.contains(&5));Sourcepub fn drain_filter<'a, F>(&'a mut self, pred: F) -> DrainFilter<'a, T, C, F> ⓘ
pub fn drain_filter<'a, F>(&'a mut self, pred: F) -> DrainFilter<'a, T, C, F> ⓘ
Creates an iterator which uses a closure to determine if a value should be removed.
If the closure returns true, then the value is removed and yielded. If the closure returns false, the value will remain in the list and will not be yielded by the iterator.
If the iterator is only partially consumed or not consumed at all, each of the remaining values will still be subjected to the closure and removed and dropped if it returns true.
It is unspecified how many more values will be subjected to the closure
if a panic occurs in the closure, or if a panic occurs while dropping a value, or if the
DrainFilter itself is leaked.
§Example
Splitting a set into even and odd values, reusing the original set:
use btree_slab::BTreeSet;
let mut set: BTreeSet<i32> = (0..8).collect();
let evens: BTreeSet<_> = set.drain_filter(|v| v % 2 == 0).collect();
let odds = set;
assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![0, 2, 4, 6]);
assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 7]);Trait Implementations§
Source§impl<'a, T: 'a + Ord + Copy, C> Extend<&'a T> for BTreeSet<T, C>
impl<'a, T: 'a + Ord + Copy, C> Extend<&'a T> for BTreeSet<T, C>
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)Source§impl<T: Ord, C> Extend<T> for BTreeSet<T, C>
impl<T: Ord, C> Extend<T> for BTreeSet<T, C>
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)