1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//! [![logo](http://i.imgur.com/dnpEXyh.jpg)](http://i.imgur.com/RUEw8EW.png)
//!
//! bspline
//! ===
//! A library for computing B-spline interpolating curves on generic control points. bspline can
//! be used to evaluate B-splines of varying orders on any type that can be linearly interpolated,
//! ranging from floats, positions, RGB colors to transformation matrices and so on.
//!
//! The bspline logo was generated using this library with a cubic B-spline in 2D for the positioning
//! of the curve and a quadratic B-spline in RGB space to color it (check out the
//! [logo](https://github.com/Twinklebear/bspline/blob/master/examples/logo.rs) example!). Other
//! much simpler examples of 1D and 2D quadratic, cubic and quartic B-splines can also be found in
//! the [examples](https://github.com/Twinklebear/bspline/tree/master/examples).
//!
//! # 1D Example
//!
//! This example shows how to create the 1D cardinal cubic B-spline example shown on [Wikipedia's
//! B-splines page](https://en.wikipedia.org/wiki/B-spline). For examples of evaluating the spline
//! to an image and saving the output see the [examples](https://github.com/Twinklebear/bspline/tree/master/examples).
//!
//! ```rust
//! let points = vec![0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0];
//! let knots = vec![-2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0, 2.0];
//! let degree = 3;
//! let spline = bspline::BSpline::new(degree, points, knots);
//! ```
//!
//! # Readings on B-splines
//!
//! The library assumes you are familiar at some level with how B-splines work, e.g. how
//! control points and knots and effect the curve produced. No interactive
//! editor is provided (at least currently). Some good places to start reading about B-splines to
//! effectively use this library can be found below.
//!
//! - [Wikipedia page on B-splines](https://en.wikipedia.org/wiki/B-spline)
//! - [Fundamentals of Computer Graphics](http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690)
//! (has a good chapter on curves)
//! - [Splines and B-splines: An Introduction](http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v07/undervisningsmateriale/kap1.pdf)
//! - [Geometric Modeling](http://atrey.karlin.mff.cuni.cz/projekty/vrr/doc/grafika/geometric%20modelling.pdf)
//! - [A nice set of interactive examples](https://www.ibiblio.org/e-notes/Splines/Intro.htm)
//!

use std::ops::{Mul, Add};
use std::slice::Iter;

/// The interpolate trait is used to linearly interpolate between two types (or in the
/// case of Quaternions, spherically linearly interpolate). The B-spline curve uses this
/// trait to compute points on the curve for the given parameter value.
///
/// A default implementation of this trait is provided for all `T` that are `Mul<f32, Output = T>
/// + Add<Output = T> + Copy` as these are the only operations needed to linearly interpolate the
/// values. Any type implementing this trait should perform whatever the appropriate linear
/// interpolaton is for the type.
pub trait Interpolate {
    /// Linearly interpolate between `self` and `other` using `t`, for example with floats:
    ///
    /// ```text
    /// self * (1.0 - t) + other * t
    /// ```
    ///
    /// If the result returned is not a correct linear interpolation of the values the
    /// curve produced using the value may not be correct.
    fn interpolate(&self, other: &Self, t: f32) -> Self;
}

impl<T: Mul<f32, Output = T> + Add<Output = T> + Copy> Interpolate for T {
    fn interpolate(&self, other: &Self, t: f32) -> Self {
        *self * (1.0 - t) + *other * t
    }
}

/// Represents a B-spline curve that will use polynomials of the specified degree
/// to interpolate between the control points given the knots.
#[derive(Clone, Debug)]
pub struct BSpline<T: Interpolate + Copy> {
    /// Degree of the polynomial that we use to make the curve segments
    degree: usize,
    /// Control points for the curve
    control_points: Vec<T>,
    /// The knot vector
    knots: Vec<f32>,
}

impl<T: Interpolate + Copy> BSpline<T> {
    /// Create a new B-spline curve of the desired `degree` that will interpolate
    /// the `control_points` using the `knots`. The knots should be sorted in non-decreasing
    /// order otherwise they will be sorted for you, which may lead to undesired knots
    /// for control points. Note that here we use the interpolating polynomial degree,
    /// if you're familiar with the convention of "B-spline curve order" the degree is `curve_order - 1`.
    ///
    /// Your curve must have a valid number of control points and knots or the function will panic. A B-spline
    /// curve requires at least as one more control point than the degree (`control_points.len() >
    /// degree`) and the number of knots should be equal to `control_points.len() + degree + 1`.
    pub fn new(degree: usize, control_points: Vec<T>, mut knots: Vec<f32>) -> BSpline<T> {
        if control_points.len() <= degree {
            panic!("Too few control points for curve");
        }
        if knots.len() != control_points.len() + degree + 1 {
            panic!(format!("Invalid number of knots, got {}, expected {}", knots.len(),
                control_points.len() + degree + 1));
        }
        knots.sort_by(|a, b| a.partial_cmp(b).unwrap());
        BSpline { degree: degree, control_points: control_points, knots: knots }
    }
    /// Compute a point on the curve at `t`, the parameter **must** be in the inclusive range
    /// of values returned by `knot_domain`. If `t` is out of bounds this function will assert
    /// on debug builds and on release builds you'll likely get an out of bounds crash.
    pub fn point(&self, t: f32) -> T {
        debug_assert!(t >= self.knot_domain().0 && t <= self.knot_domain().1);
        // Find the first index with a knot value greater than the t we're searching for. We want
        // to find i such that: knot[i] <= t < knot[i + 1]
        let i = match upper_bounds(&self.knots[..], t) {
            Some(x) if x == 0 => self.degree,
            Some(x) if x >= self.knots.len() - self.degree - 1 =>
                self.knots.len() - self.degree - 1,
            Some(x) => x,
            None => self.knots.len() - self.degree - 1,
        };
        self.de_boor_iterative(t, i)
    }
    /// Get an iterator over the control points.
    pub fn control_points(&self) -> Iter<T> {
        self.control_points.iter()
    }
    /// Get an iterator over the knots.
    pub fn knots(&self) -> Iter<f32> {
        self.knots.iter()
    }
    /// Get the min and max knot domain values for finding the `t` range to compute
    /// the curve over. The curve is only defined over the inclusive range `[min, max]`,
    /// passing a `t` value outside of this range will result in an assert on debug builds
    /// and likely a crash on release builds.
    pub fn knot_domain(&self) -> (f32, f32) {
        (self.knots[self.degree], self.knots[self.knots.len() - 1 - self.degree])
    }
    /// Iteratively compute de Boor's B-spline algorithm, this computes the recursive
    /// de Boor algorithm tree from the bottom up. At each level we use the results
    /// from the previous one to compute this level and store the results in the
    /// array indices we no longer need to compute the current level (the left one
    /// used computing node j).
    fn de_boor_iterative(&self, t: f32, i_start: usize) -> T {
        let mut tmp = Vec::with_capacity(self.degree + 1);
        for j in 0..self.degree + 1 {
            let p = j + i_start - self.degree - 1;
            tmp.push(self.control_points[p]);
        }
        for lvl in 0..self.degree {
            let k = lvl + 1;
            for j in 0..self.degree - lvl {
                let i = j + k + i_start - self.degree;
                let alpha = (t - self.knots[i - 1]) / (self.knots[i + self.degree - k] - self.knots[i - 1]);
                debug_assert!(!alpha.is_nan());
                tmp[j] = tmp[j].interpolate(&tmp[j + 1], alpha);
            }
        }
        tmp[0]
    }
}

/// Return the index of the first element greater than the value passed.
/// The data **must** be sorted. If no element greater than the value
/// passed is found the function returns None.
fn upper_bounds(data: &[f32], value: f32) -> Option<usize> {
    let mut first = 0usize;
    let mut step;
    let mut count = data.len() as isize;
    while count > 0 {
        step = count / 2;
        let it = first + step as usize;
        if !value.lt(&data[it]) {
            first = it + 1;
            count -= step + 1;
        } else {
            count = step;
        }
    }
    // If we didn't find an element greater than value
    if first == data.len() {
        None
    } else {
        Some(first)
    }
}

#[cfg(test)]
mod test {
    use super::BSpline;

    /// Check that the bspline returns the values we expect it to at various t values
    fn check_bspline(spline: &BSpline<f32>, expect: &Vec<(f32, f32)>) -> bool {
        expect.iter().fold(true, |ac, &(t, x)| ac && spline.point(t) == x)
    }

    #[test]
    fn linear_bspline() {
        let expect = vec![(0.0, 0.0), (0.2, 0.2), (0.4, 0.4), (0.6, 0.6),
                          (0.8, 0.8), (1.0, 1.0)];
        let points = vec![0.0, 1.0];
        let knots = vec![0.0, 0.0, 1.0, 1.0];
        let degree = 1;
        let spline = BSpline::new(degree, points, knots);
        assert!(check_bspline(&spline, &expect));
    }
    #[test]
    fn quadratic_bspline() {
        let expect = vec![(0.0, 0.0), (0.5, 0.125), (1.0, 0.5), (1.4, 0.74), (1.5, 0.75),
                          (1.6, 0.74), (2.0, 0.5), (2.5, 0.125), (3.0, 0.0)];
        let points = vec![0.0, 0.0, 1.0, 0.0, 0.0];
        let knots = vec![0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 3.0, 3.0];
        let degree = 2;
        let spline = BSpline::new(degree, points, knots);
        assert!(check_bspline(&spline, &expect));
    }
    #[test]
    fn cubic_bspline() {
        let expect = vec![(-2.0, 0.0), (-1.5, 0.125), (-1.0, 1.0), (-0.6, 2.488),
                           (0.0, 4.0), (0.5, 2.875), (1.5, 0.12500001), (2.0, 0.0)];
        let points = vec![0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0];
        let knots = vec![-2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0, 2.0];
        let degree = 3;
        let spline = BSpline::new(degree, points, knots);
        assert!(check_bspline(&spline, &expect));
    }
    #[test]
    fn quartic_bspline() {
        let expect = vec![(0.0, 0.0), (0.4, 0.0010666668), (1.0, 0.041666668),
                          (1.5, 0.19791667), (2.0, 0.4583333), (2.5, 0.5989583),
                          (3.0, 0.4583333), (3.2, 0.35206667), (4.1, 0.02733751),
                          (4.5, 0.002604167), (5.0, 0.0)];
        let points = vec![0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0];
        let knots = vec![0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0];
        let degree = 4;
        let spline = BSpline::new(degree, points, knots);
        assert!(check_bspline(&spline, &expect));
    }
}