1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! ObjectId

use std::{
    convert::TryInto,
    error,
    fmt,
    result,
    str::FromStr,
    sync::atomic::{AtomicUsize, Ordering},
    time::SystemTime,
};

use chrono::Utc;
use hex::{self, FromHexError};
use rand::{thread_rng, Rng};

use lazy_static::lazy_static;

const TIMESTAMP_SIZE: usize = 4;
const PROCESS_ID_SIZE: usize = 5;
const COUNTER_SIZE: usize = 3;

const TIMESTAMP_OFFSET: usize = 0;
const PROCESS_ID_OFFSET: usize = TIMESTAMP_OFFSET + TIMESTAMP_SIZE;
const COUNTER_OFFSET: usize = PROCESS_ID_OFFSET + PROCESS_ID_SIZE;

const MAX_U24: usize = 0xFF_FFFF;

lazy_static! {
    static ref OID_COUNTER: AtomicUsize = AtomicUsize::new(thread_rng().gen_range(0, MAX_U24 + 1));
}

/// Errors that can occur during OID construction and generation.
#[derive(Debug)]
#[non_exhaustive]
pub enum Error {
    /// An invalid argument was passed in.
    ArgumentError { message: String },

    /// An error occured parsing a hex string.
    FromHexError(FromHexError),
}

impl From<FromHexError> for Error {
    fn from(err: FromHexError) -> Error {
        Error::FromHexError(err)
    }
}

/// Alias for Result<T, oid::Error>.
pub type Result<T> = result::Result<T, Error>;

impl fmt::Display for Error {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::ArgumentError { ref message } => message.fmt(fmt),
            Error::FromHexError(ref inner) => inner.fmt(fmt),
        }
    }
}

impl error::Error for Error {
    fn cause(&self) -> Option<&dyn error::Error> {
        match *self {
            Error::ArgumentError { .. } => None,
            Error::FromHexError(ref inner) => Some(inner),
        }
    }
}

/// A wrapper around raw 12-byte ObjectId representations.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct ObjectId {
    id: [u8; 12],
}

impl Default for ObjectId {
    fn default() -> Self {
        Self::new()
    }
}

impl FromStr for ObjectId {
    type Err = Error;

    fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
        Self::with_string(s)
    }
}

impl ObjectId {
    /// Generates a new ObjectID, represented in bytes.
    /// See the [docs](http://docs.mongodb.org/manual/reference/object-id/)
    /// for more information.
    pub fn new() -> ObjectId {
        let timestamp = ObjectId::gen_timestamp();
        let process_id = ObjectId::gen_process_id();
        let counter = ObjectId::gen_count();

        let mut buf: [u8; 12] = [0; 12];
        buf[TIMESTAMP_OFFSET..(TIMESTAMP_SIZE + TIMESTAMP_OFFSET)]
            .clone_from_slice(&timestamp[..TIMESTAMP_SIZE]);
        buf[PROCESS_ID_OFFSET..(PROCESS_ID_SIZE + PROCESS_ID_OFFSET)]
            .clone_from_slice(&process_id[..PROCESS_ID_SIZE]);
        buf[COUNTER_OFFSET..(COUNTER_SIZE + COUNTER_OFFSET)]
            .clone_from_slice(&counter[..COUNTER_SIZE]);

        ObjectId::with_bytes(buf)
    }

    /// Constructs a new ObjectId wrapper around the raw byte representation.
    pub fn with_bytes(bytes: [u8; 12]) -> ObjectId {
        ObjectId { id: bytes }
    }

    /// Creates an ObjectID using a 12-byte (24-char) hexadecimal string.
    pub fn with_string(s: &str) -> Result<ObjectId> {
        let bytes: Vec<u8> = hex::decode(s.as_bytes())?;
        if bytes.len() != 12 {
            Err(Error::ArgumentError {
                message: "Provided string must be a 12-byte hexadecimal string.".to_owned(),
            })
        } else {
            let mut byte_array: [u8; 12] = [0; 12];
            byte_array[..].copy_from_slice(&bytes[..]);
            Ok(ObjectId::with_bytes(byte_array))
        }
    }

    /// Retrieves the timestamp (chrono::DateTime) from an ObjectId.
    pub fn timestamp(&self) -> chrono::DateTime<Utc> {
        let mut buf = [0; 4];
        buf.copy_from_slice(&self.id[0..4]);
        let seconds_since_epoch = u32::from_be_bytes(buf);

        let naive_datetime = chrono::NaiveDateTime::from_timestamp(seconds_since_epoch as i64, 0);
        let timestamp: chrono::DateTime<Utc> = chrono::DateTime::from_utc(naive_datetime, Utc);
        timestamp
    }

    /// Returns the raw byte representation of an ObjectId.
    pub fn bytes(&self) -> [u8; 12] {
        self.id
    }

    /// Convert the objectId to hex representation.
    pub fn to_hex(&self) -> String {
        hex::encode(self.id)
    }

    /// Generates a new timestamp representing the current seconds since epoch.
    /// Represented in Big Endian.
    fn gen_timestamp() -> [u8; 4] {
        let timestamp: u32 = SystemTime::now()
            .duration_since(SystemTime::UNIX_EPOCH)
            .expect("system clock is before 1970")
            .as_secs()
            .try_into()
            .unwrap(); // will succeed until 2106 since timestamp is unsigned
        timestamp.to_be_bytes()
    }

    /// Generate a random 5-byte array.
    fn gen_process_id() -> [u8; 5] {
        lazy_static! {
            static ref BUF: [u8; 5] = thread_rng().gen();
        }

        *BUF
    }

    /// Gets an incremental 3-byte count.
    /// Represented in Big Endian.
    fn gen_count() -> [u8; 3] {
        let u_counter = OID_COUNTER.fetch_add(1, Ordering::SeqCst);

        // Mod result instead of OID_COUNTER to prevent threading issues.
        let u = u_counter % (MAX_U24 + 1);

        // Convert usize to writable u64, then extract the first three bytes.
        let u_int = u as u64;

        let buf = u_int.to_be_bytes();
        let buf_u24: [u8; 3] = [buf[5], buf[6], buf[7]];
        buf_u24
    }
}

impl fmt::Display for ObjectId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&self.to_hex())
    }
}

impl fmt::Debug for ObjectId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&format!("ObjectId({})", self.to_hex()))
    }
}

#[cfg(test)]
use crate::tests::LOCK;

#[test]
fn count_generated_is_big_endian() {
    let _guard = LOCK.run_exclusively();
    let start = 1_122_866;
    OID_COUNTER.store(start, Ordering::SeqCst);

    // Test count generates correct value 1122866
    let count_bytes = ObjectId::gen_count();

    let mut buf: [u8; 4] = [0; 4];
    buf[1..=COUNTER_SIZE].clone_from_slice(&count_bytes[..COUNTER_SIZE]);

    let count = u32::from_be_bytes(buf);
    assert_eq!(start as u32, count);

    // Test OID formats count correctly as big endian
    let oid = ObjectId::new();

    assert_eq!(0x11u8, oid.bytes()[COUNTER_OFFSET]);
    assert_eq!(0x22u8, oid.bytes()[COUNTER_OFFSET + 1]);
    assert_eq!(0x33u8, oid.bytes()[COUNTER_OFFSET + 2]);
}

#[test]
fn test_counter_overflow_u24_max() {
    let _guard = LOCK.run_exclusively();
    let start = MAX_U24;
    OID_COUNTER.store(start, Ordering::SeqCst);
    let oid = ObjectId::new();
    assert_eq!(0xFFu8, oid.bytes()[COUNTER_OFFSET]);
    assert_eq!(0xFFu8, oid.bytes()[COUNTER_OFFSET + 1]);
    assert_eq!(0xFFu8, oid.bytes()[COUNTER_OFFSET + 2]);
    // Test counter overflows to 0 when set to MAX_24 + 1
    let oid_new = ObjectId::new();
    assert_eq!(0x00u8, oid_new.bytes()[COUNTER_OFFSET]);
    assert_eq!(0x00u8, oid_new.bytes()[COUNTER_OFFSET + 1]);
    assert_eq!(0x00u8, oid_new.bytes()[COUNTER_OFFSET + 2]);
}

#[test]
fn test_counter_overflow_usize_max() {
    let _guard = LOCK.run_exclusively();
    let start = usize::max_value();
    OID_COUNTER.store(start, Ordering::SeqCst);
    // Test counter overflows to u24_max when set to usize_max
    let oid = ObjectId::new();
    assert_eq!(0xFFu8, oid.bytes()[COUNTER_OFFSET]);
    assert_eq!(0xFFu8, oid.bytes()[COUNTER_OFFSET + 1]);
    assert_eq!(0xFFu8, oid.bytes()[COUNTER_OFFSET + 2]);
    // Test counter overflows to 0 when set to usize_max + 1
    let oid_new = ObjectId::new();
    assert_eq!(0x00u8, oid_new.bytes()[COUNTER_OFFSET]);
    assert_eq!(0x00u8, oid_new.bytes()[COUNTER_OFFSET + 1]);
    assert_eq!(0x00u8, oid_new.bytes()[COUNTER_OFFSET + 2]);
}

#[cfg(test)]
mod test {
    use chrono::{offset::TimeZone, Utc};

    #[test]
    fn test_display() {
        let id = super::ObjectId::with_string("53e37d08776f724e42000000").unwrap();

        assert_eq!(format!("{}", id), "53e37d08776f724e42000000")
    }

    #[test]
    fn test_debug() {
        let id = super::ObjectId::with_string("53e37d08776f724e42000000").unwrap();

        assert_eq!(format!("{:?}", id), "ObjectId(53e37d08776f724e42000000)")
    }

    #[test]
    fn test_timestamp() {
        let id = super::ObjectId::with_string("000000000000000000000000").unwrap();
        // "Jan 1st, 1970 00:00:00 UTC"
        assert_eq!(Utc.ymd(1970, 1, 1).and_hms(0, 0, 0), id.timestamp());

        let id = super::ObjectId::with_string("7FFFFFFF0000000000000000").unwrap();
        // "Jan 19th, 2038 03:14:07 UTC"
        assert_eq!(Utc.ymd(2038, 1, 19).and_hms(3, 14, 7), id.timestamp());

        let id = super::ObjectId::with_string("800000000000000000000000").unwrap();
        // "Jan 19th, 2038 03:14:08 UTC"
        assert_eq!(Utc.ymd(2038, 1, 19).and_hms(3, 14, 8), id.timestamp());

        let id = super::ObjectId::with_string("FFFFFFFF0000000000000000").unwrap();
        // "Feb 7th, 2106 06:28:15 UTC"
        assert_eq!(Utc.ymd(2106, 2, 7).and_hms(6, 28, 15), id.timestamp());
    }
}