1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright 2021 Shin Yoshida
//
// "LGPL-3.0-or-later OR Apache-2.0 OR BSD-2-Clause"
//
// This is part of bsn1
//
//  bsn1 is free software: you can redistribute it and/or modify
//  it under the terms of the GNU Lesser General Public License as published by
//  the Free Software Foundation, either version 3 of the License, or
//  (at your option) any later version.
//
//  bsn1 is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public License
//  along with bsn1.  If not, see <http://www.gnu.org/licenses/>.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Redistribution and use in source and binary forms, with or without modification, are permitted
// provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice, this
//    list of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

//! Provides functions to serialize/deserialize contents octets.

use crate::{Error, StackBuffer};
use core::mem::{size_of, size_of_val};

/// Serializes integer as contents octets.
///
/// This function is common for BER, DER, and CER.
///
/// # Wargnings
///
/// This function assumes that the CPU adopts 2's complement to represent negative value.
pub fn from_integer(val: i128) -> impl AsRef<[u8]> {
    if val < 0 {
        from_integer_negative(val)
    } else {
        from_integer_positive(val)
    }
}

fn from_integer_positive(val: i128) -> StackBuffer {
    debug_assert!(0 <= val);

    let len = (8 * size_of_val(&val) - val.leading_zeros() as usize) / 8 + 1;
    let mut buffer = StackBuffer::new();
    unsafe { buffer.set_len(len) };

    let mut val = val;
    for i in (0..len).rev() {
        buffer[i] = val as u8;
        val >>= 8;
    }

    buffer
}

/// # Wargnings
///
/// This function assumes that the CPU adopt 2's complement to represent negative value.
fn from_integer_negative(val: i128) -> StackBuffer {
    debug_assert!(val < 0);

    // I don't think the behavior is not defined to shift negative value, however, 'ISO/IEC
    // 1539:1991 (C99)' defines the spec of the division and reminder.
    //
    // In short, if the numerator is nagative and the divisor is positive,
    //
    // - The reminder equals to 0 or less than 0.
    // - The result of division is truncated towards 0.
    let shift = |v: i128| -> (i128, u8) { ((v + 1) / 256 - 1, (v % 256 + 256) as u8) };

    let len = (8 * size_of_val(&val) - val.leading_ones() as usize) / 8 + 1;
    let mut buffer = StackBuffer::new();
    unsafe { buffer.set_len(len) };

    let mut val = val;
    for i in (0..len).rev() {
        buffer[i] = shift(val).1;
        val = shift(val).0;
    }

    buffer
}

/// Parses `bytes` as a contents of Integer.
///
/// This function is common for BER, DER, and CER.
///
/// # Wargnings
///
/// This function assumes that the CPU adopts 2's complement to represent negative value.
#[inline]
pub fn to_integer(bytes: &[u8]) -> Result<i128, Error> {
    if size_of::<i128>() < bytes.len() {
        Err(Error::OverFlow)
    } else if bytes.is_empty() {
        Err(Error::UnTerminatedBytes)
    } else {
        if 1 < bytes.len() {
            if (bytes[0] == 0) && (bytes[1] & 0x80 == 0x00) {
                return Err(Error::RedundantBytes);
            }
            if (bytes[0] == 0xff) && (bytes[1] & 0x80 == 0x80) {
                return Err(Error::RedundantBytes);
            }
        }

        let init: i128 = if bytes[0] & 0x80 == 0x80 { -1 } else { 0 };
        let ret = bytes.iter().fold(init, |acc, &o| (acc * 256) + (o as i128));
        Ok(ret)
    }
}

/// Serializes boolean as contents octets.
///
/// This function is common for BER, DER, and CER.
#[inline]
pub fn from_bool(val: bool) -> impl AsRef<[u8]> {
    if val {
        [0xff] as [u8; 1]
    } else {
        [0x00] as [u8; 1]
    }
}

/// Parses `bytes` as a BER contents of Bool.
///
/// This function is valid only for the contents of BER, and not applied to the contents of
/// DER nor CER.
#[inline]
pub fn to_bool_ber(bytes: &[u8]) -> Result<bool, Error> {
    if bytes.is_empty() {
        Err(Error::UnTerminatedBytes)
    } else if 1 < bytes.len() {
        Err(Error::InvalidContents)
    } else if bytes[0] == 0x00 {
        Ok(false)
    } else {
        Ok(true)
    }
}

/// Parses `bytes` as a DER contents of Bool.
///
/// This function is valid only for the contents of DER, and not applied to the contents of
/// 'CER' nor 'BER.'
#[inline]
pub fn to_bool_der(bytes: &[u8]) -> Result<bool, Error> {
    if bytes.is_empty() {
        Err(Error::UnTerminatedBytes)
    } else if 1 < bytes.len() {
        Err(Error::InvalidContents)
    } else if bytes[0] == 0x00 {
        Ok(false)
    } else if bytes[0] == 0xff {
        Ok(true)
    } else {
        Err(Error::InvalidContents)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_from_integer() {
        // Negative
        {
            // -1
            assert_eq!(&[0xff], from_integer(-1).as_ref());
            // -0x80
            assert_eq!(&[0x80], from_integer(-0x80).as_ref());
            // -0x81
            assert_eq!(&[0xff, 0x7f], from_integer(-0x81).as_ref());
            // -0x0100
            assert_eq!(&[0xff, 0x00], from_integer(-0x0100).as_ref());
            // -0x0101
            assert_eq!(&[0xfe, 0xff], from_integer(-0x0101).as_ref());
            // -0x8000
            assert_eq!(&[0x80, 0x00], from_integer(-0x8000).as_ref());
            // -0x8001
            assert_eq!(&[0xff, 0x7f, 0xff], from_integer(-0x8001).as_ref());
            // i128::MIN
            {
                let bytes: &mut [u8] = &mut [0x00; size_of::<i128>()];
                bytes[0] = 0x80;
                assert_eq!(bytes, from_integer(i128::MIN).as_ref());
            }
        }
        // 0
        assert_eq!(&[0x00], from_integer(0).as_ref());
        // Positive
        {
            // 1
            assert_eq!(&[0x01], from_integer(1).as_ref());
            // 0x7f
            assert_eq!(&[0x7f], from_integer(0x7f).as_ref());
            // 0x80
            assert_eq!(&[0x00, 0x80], from_integer(0x80).as_ref());
            // 0xff
            assert_eq!(&[0x00, 0xff], from_integer(0xff).as_ref());
            // 0x0100
            assert_eq!(&[0x01, 0x00], from_integer(0x0100).as_ref());
            // 0x7fff
            assert_eq!(&[0x7f, 0xff], from_integer(0x7fff).as_ref());
            // 0x8000
            assert_eq!(&[0x00, 0x80, 0x00], from_integer(0x8000).as_ref());
            // i128::MAX
            {
                let bytes: &mut [u8] = &mut [0xff; size_of::<i128>()];
                bytes[0] = 0x7f;
                assert_eq!(bytes, from_integer(i128::MAX).as_ref());
            }
        }
    }

    #[test]
    fn test_to_integer() {
        // Negative
        {
            // -1
            assert_eq!(-1, to_integer(&[0xff]).unwrap());
            // -0x80
            assert_eq!(-0x80, to_integer(&[0x80]).unwrap());
            // -0x81
            assert_eq!(-0x81, to_integer(&[0xff, 0x7f]).unwrap());
            // -0x0100
            assert_eq!(-0x0100, to_integer(&[0xff, 0x00]).unwrap());
            // -0x0101
            assert_eq!(-0x0101, to_integer(&[0xfe, 0xff]).unwrap());
            // -0x8000
            assert_eq!(-0x8000, to_integer(&[0x80, 0x00]).unwrap());
            // -0x8001
            assert_eq!(-0x8001, to_integer(&[0xff, 0x7f, 0xff]).unwrap());
            // i128::MIN
            {
                let bytes: &mut [u8] = &mut [0x00; size_of::<i128>()];
                bytes[0] = 0x80;
                assert_eq!(i128::MIN, to_integer(bytes).unwrap());
            }
        }
        // 0
        assert_eq!(0x00, to_integer(&[0x00]).unwrap());
        // Positive
        {
            // 1
            assert_eq!(1, to_integer(&[0x01]).unwrap());
            // 0x7f
            assert_eq!(0x7f, to_integer(&[0x7f]).unwrap());
            // 0x80
            assert_eq!(0x80, to_integer(&[0x00, 0x80]).unwrap());
            // 0xff
            assert_eq!(0xff, to_integer(&[0x00, 0xff]).unwrap());
            // 0x0100
            assert_eq!(0x0100, to_integer(&[0x01, 0x00]).unwrap());
            // 0x7fff
            assert_eq!(0x7fff, to_integer(&[0x7f, 0xff]).unwrap());
            // 0x8000
            assert_eq!(0x8000, to_integer(&[0x00, 0x80, 0x00]).unwrap());
            // i128::MAX
            {
                let bytes: &mut [u8] = &mut [0xff; size_of::<i128>()];
                bytes[0] = 0x7f;
                assert_eq!(i128::MAX, to_integer(bytes).unwrap());
            }
        }
    }
}