1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
mod tests;
use ::core;
use alloc;
use alloc::Allocator;
use alloc::SliceWrapper;
use alloc::SliceWrapperMut;
use core::default::Default;
pub const BROTLI_HUFFMAN_MAX_CODE_LENGTH: usize = 15;

// For current format this constant equals to kNumInsertAndCopyCodes
pub const BROTLI_HUFFMAN_MAX_CODE_LENGTHS_SIZE: usize = 704;

// Maximum possible Huffman table size for an alphabet size of (index * 32),
// max code length 15 and root table bits 8.
// pub const kMaxHuffmanTableSize : [u16;23] = [
// 256, 402, 436, 468, 500, 534, 566, 598, 630, 662, 694, 726, 758, 790, 822,
// 854, 886, 920, 952, 984, 1016, 1048, 1080];
// pub const BROTLI_HUFFMAN_MAX_SIZE_26 : u32 = 396;
// pub const BROTLI_HUFFMAN_MAX_SIZE_258 : u32 = 632;
// pub const BROTLI_HUFFMAN_MAX_SIZE_272 : u32 = 646;
//
pub const BROTLI_HUFFMAN_MAX_TABLE_SIZE: u32 = 1080;
pub const BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH: u32 = 5;

#[derive(PartialEq, Copy, Clone, Debug)]
pub struct HuffmanCode {
  pub bits: u8, // number of bits used for this symbol
  pub value: u16, // symbol value or table offset
}
impl HuffmanCode {
  pub fn eq(&self, other: &Self) -> bool {
    self.value == other.value && self.bits == other.bits
  }
}

impl Default for HuffmanCode {
  fn default() -> Self {
    HuffmanCode {
      value: 0,
      bits: 0,
    }
  }
}

// Contains a collection of Huffman trees with the same alphabet size.
pub struct HuffmanTreeGroup<Alloc32: Allocator<u32>, AllocHC: Allocator<HuffmanCode>> {
  pub htrees: Alloc32::AllocatedMemory,
  pub codes: AllocHC::AllocatedMemory,
  pub alphabet_size: u16,
  pub num_htrees: u16,
}
impl<AllocU32 : alloc::Allocator<u32>,
     AllocHC : alloc::Allocator<HuffmanCode> > HuffmanTreeGroup<AllocU32, AllocHC> {
    pub fn init(self : &mut Self, mut alloc_u32 : &mut AllocU32, mut alloc_hc : &mut AllocHC,
                alphabet_size : u16, ntrees : u16) {
        self.reset(&mut alloc_u32, &mut alloc_hc);
        self.alphabet_size = alphabet_size;
        self.num_htrees = ntrees;
        let nt = ntrees as usize;
        core::mem::replace(&mut self.htrees,
                           alloc_u32.alloc_cell(nt));
        core::mem::replace(&mut self.codes,
                           alloc_hc.alloc_cell(nt * BROTLI_HUFFMAN_MAX_TABLE_SIZE as usize));
    }

//  pub fn get_tree_mut<'a>(self :&'a mut Self, index : u32, mut tree_out : &'a mut [HuffmanCode]) {
//        let start : usize = fast!((self.htrees)[index as usize]) as usize;
//        core::mem::replace(&mut tree_out, fast_mut!((self.codes.slice_mut())[start;]));
//    }
//    pub fn get_tree<'a>(self :&'a Self, index : u32, mut tree_out : &'a [HuffmanCode]) {
//        let start : usize = fast!((self.htrees)[index as usize]) as usize;
//        core::mem::replace(&mut tree_out, fast_slice!((self.codes)[start;]));
//    }
    #[allow(dead_code)]
    pub fn get_tree_mut(&mut self, index : u32) -> &mut [HuffmanCode] {
        let start : usize = fast_slice!((self.htrees)[index as usize]) as usize;
        fast_mut!((self.codes.slice_mut())[start;])
    }
    #[allow(dead_code)]
    pub fn get_tree(&self, index : u32) -> &[HuffmanCode] {
        let start : usize = fast_slice!((self.htrees)[index as usize]) as usize;
        fast_slice!((self.codes)[start;])
    }
    pub fn reset(self : &mut Self, alloc_u32 : &mut AllocU32, alloc_hc : &mut AllocHC) {
        alloc_u32.free_cell(core::mem::replace(&mut self.htrees,
                                               AllocU32::AllocatedMemory::default()));
        alloc_hc.free_cell(core::mem::replace(&mut self.codes,
                                              AllocHC::AllocatedMemory::default()));

// for mut iter in self.htrees[0..self.num_htrees as usize].iter_mut() {
//    if iter.slice().len() > 0 {
//        alloc_hc.free_cell(core::mem::replace(&mut iter,
//                                              AllocHC::AllocatedMemory::default()));
//    }
// }

    }
    pub fn build_hgroup_cache(&self) -> [&[HuffmanCode]; 256] {
      let mut ret : [&[HuffmanCode]; 256] = [&[]; 256];
      let mut index : usize = 0;
      for htree in self.htrees.slice() {
          ret[index] = fast_slice!((&self.codes)[*htree as usize ; ]);
          index += 1;
      }
      ret
    }
}

impl<AllocU32 : alloc::Allocator<u32>,
     AllocHC : alloc::Allocator<HuffmanCode> > Default for HuffmanTreeGroup<AllocU32, AllocHC> {
    fn default() -> Self {
        HuffmanTreeGroup::<AllocU32, AllocHC> {
          htrees : AllocU32::AllocatedMemory::default(),
          codes : AllocHC::AllocatedMemory::default(),
          alphabet_size : 0,
          num_htrees : 0,
        }
    }
}



const BROTLI_REVERSE_BITS_MAX: usize = 8;

const BROTLI_REVERSE_BITS_BASE: u8 = 0;
const kReverseBits: [u8; (1 << BROTLI_REVERSE_BITS_MAX)] =
  [0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
   0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
   0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
   0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
   0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
   0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
   0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
   0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
   0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
   0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
   0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
   0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
   0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
   0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
   0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
   0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF];

const BROTLI_REVERSE_BITS_LOWEST: u32 =
  (1u32 << (BROTLI_REVERSE_BITS_MAX as u32 - 1 + BROTLI_REVERSE_BITS_BASE as u32));

// Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
// where reverse(value, len) is the bit-wise reversal of the len least
// significant bits of value.
fn BrotliReverseBits(num: u32) -> u32 {
  fast!((kReverseBits)[num as usize]) as u32
}

// Stores code in table[0], table[step], table[2*step], ..., table[end]
// Assumes that end is an integer multiple of step
fn ReplicateValue(table: &mut [HuffmanCode],
                  offset: u32,
                  step: i32,
                  mut end: i32,
                  code: HuffmanCode) {
  loop {
    end -= step;
    fast_mut!((table)[offset as usize + end as usize]) = code;
    if end <= 0 {
      break;
    }
  }
}

// Returns the table width of the next 2nd level table. count is the histogram
// of bit lengths for the remaining symbols, len is the code length of the next
// processed symbol
fn NextTableBitSize(count: &[u16], mut len: i32, root_bits: i32) -> i32 {
  let mut left: i32 = 1 << (len - root_bits);
  while len < BROTLI_HUFFMAN_MAX_CODE_LENGTH as i32 {
    left -= fast!((count)[len as usize]) as i32;
    if left <= 0 {
      break;
    }
    len += 1;
    left <<= 1;
  }
  len - root_bits
}


pub fn BrotliBuildCodeLengthsHuffmanTable(mut table: &mut [HuffmanCode],
                                          code_lengths: &[u8],
                                          count: &[u16]) {
  let mut sorted: [i32; 18] = fast_uninitialized![18];     /* symbols sorted by code length */
  // offsets in sorted table for each length
  let mut offset: [i32; (BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1) as usize] =
    fast_uninitialized![(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1) as usize];
  assert!(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH as usize <= BROTLI_REVERSE_BITS_MAX as usize);

  // generate offsets into sorted symbol table by code length
  let mut symbol: i32 = -1;         /* symbol index in original or sorted table */
  let mut bits: i32 = 1;
  for _ in 0..BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH {
    symbol += fast!((count)[bits as usize]) as i32;
    fast_mut!((offset)[bits as usize]) = symbol;
    bits += 1;
  }
  // Symbols with code length 0 are placed after all other symbols.
  fast_mut!((offset)[0]) = 17;

  // sort symbols by length, by symbol order within each length
  symbol = 18;
  loop {
    for _ in 0..6 {
      symbol -= 1;
      let index = fast!((offset)[fast_inner!((code_lengths)[symbol as usize]) as usize]);
      fast_mut!((offset)[fast_inner!((code_lengths)[symbol as usize]) as usize]) -= 1;
      fast_mut!((sorted)[index as usize]) = symbol;
    }
    if symbol == 0 {
      break;
    }
  }

  const table_size: i32 = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;

  // Special case: all symbols but one have 0 code length.
  if fast!((offset)[0]) == 0 {
    let code: HuffmanCode = HuffmanCode {
      bits: 0,
      value: fast!((sorted)[0]) as u16,
    };
    for val in fast_mut!((table)[0 ; table_size as usize]).iter_mut() {
      *val = code;
    }
    return;
  }

  // fill in table
  let mut key: u32 = 0; /* prefix code */
  let mut key_step: u32 = BROTLI_REVERSE_BITS_LOWEST; /* prefix code addend */
  symbol = 0;
  bits = 1;
  let mut step: i32 = 2;
  loop {
    let mut code: HuffmanCode = HuffmanCode {
      bits: (bits as u8),
      value: 0,
    };
    let mut bits_count: i32 = fast!((count)[bits as usize]) as i32;

    while bits_count != 0 {
      code.value = fast!((sorted)[symbol as usize]) as u16;
      symbol += 1;
      ReplicateValue(&mut table, BrotliReverseBits(key), step, table_size, code);
      key += key_step;
      bits_count -= 1;
    }
    step <<= 1;
    key_step >>= 1;
    bits += 1;
    if !(bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH as i32) {
      break;
    }
  }
}

pub fn BrotliBuildHuffmanTable(mut root_table: &mut [HuffmanCode],
                               root_bits: i32,
                               symbol_lists: &[u16],
                               symbol_lists_offset: usize, /* need negative-index to symbol_lists */
                               count: &mut [u16])
                               -> u32 {
  let mut code: HuffmanCode = HuffmanCode {
    bits: 0,
    value: 0,
  };       /* current table entry */
  let mut max_length: i32 = -1;

  assert!(root_bits as isize <= BROTLI_REVERSE_BITS_MAX as isize);
  assert!(BROTLI_HUFFMAN_MAX_CODE_LENGTH as isize - root_bits as isize <=
          BROTLI_REVERSE_BITS_MAX as isize);

  while fast!((symbol_lists)[((symbol_lists_offset as isize) + max_length as isize) as usize]) ==
        0xFFFF {
    max_length -= 1;
  }
  max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH as i32 + 1;

  let mut table_free_offset: u32 = 0;
  let mut table_bits: i32 = root_bits;      /* key length of current table */
  let mut table_size: i32 = 1 << table_bits;/* size of current table */
  let mut total_size: i32 = table_size;     /* sum of root table size and 2nd level table sizes */

  // fill in root table
  // let's reduce the table size to a smaller size if possible, and
  // create the repetitions by memcpy if possible in the coming loop
  if table_bits > max_length {
    table_bits = max_length;
    table_size = 1 << table_bits;
  }
  let mut key: u32 = 0; /* prefix code */
  let mut key_step: u32 = BROTLI_REVERSE_BITS_LOWEST; /* prefix code addend */
  let mut bits: i32 = 1;
  let mut step: i32 = 2; /* step size to replicate values in current table */
  loop {
    code.bits = bits as u8;
    let mut symbol: i32 = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH as i32 + 1);
    let mut bits_count: i32 = fast!((count)[bits as usize]) as i32;
    while bits_count != 0 {
      symbol =
        fast!((symbol_lists)[(symbol_lists_offset as isize + symbol as isize) as usize]) as i32;
      code.value = symbol as u16;
      ReplicateValue(&mut root_table,
                     table_free_offset + BrotliReverseBits(key),
                     step,
                     table_size,
                     code);
      key += key_step;
      bits_count -= 1;
    }
    step <<= 1;
    key_step >>= 1;
    bits += 1;
    if !(bits <= table_bits) {
      break;
    }
  }

  // if root_bits != table_bits we only created one fraction of the
  // table, and we need to replicate it now.
  while total_size != table_size {
    for index in 0..table_size {
      // FIXME: did I get this right?
      fast_mut!((root_table)[table_free_offset as usize + table_size as usize + index as usize]) =
        fast!((root_table)[table_free_offset as usize + index as usize]);
    }
    table_size <<= 1;
  }

  // fill in 2nd level tables and add pointers to root table
  key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
  let mut sub_key: u32 = BROTLI_REVERSE_BITS_LOWEST << 1;       /* 2nd level table prefix code */
  let mut sub_key_step: u32 = BROTLI_REVERSE_BITS_LOWEST;   /* 2nd level table prefix code addend */

  step = 2;

  let mut len: i32 = root_bits + 1; /* current code length */
  while len <= max_length {
    let mut symbol: i32 = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH as i32 + 1);
    while fast!((count)[len as usize]) != 0 {
      if sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1u32) {
        table_free_offset += table_size as u32;
        table_bits = NextTableBitSize(count, len, root_bits);
        table_size = 1 << table_bits;
        total_size += table_size;
        sub_key = BrotliReverseBits(key);
        key += key_step;
        fast_mut!((root_table)[sub_key as usize]).bits = (table_bits + root_bits) as u8;
        fast_mut!((root_table)[sub_key as usize]).value =
          ((table_free_offset as usize) - sub_key as usize) as u16;
        sub_key = 0;
      }
      code.bits = (len - root_bits) as u8;
      symbol =
        fast!((symbol_lists)[(symbol_lists_offset as isize + symbol as isize) as usize]) as i32;
      code.value = symbol as u16;
      ReplicateValue(&mut root_table,
                     table_free_offset + BrotliReverseBits(sub_key),
                     step,
                     table_size,
                     code);
      sub_key += sub_key_step;
      fast_mut!((count)[len as usize]) -= 1;
    }
    step <<= 1;
    sub_key_step >>= 1;
    len += 1
  }
  total_size as u32
}



pub fn BrotliBuildSimpleHuffmanTable(table: &mut [HuffmanCode],
                                     root_bits: i32,
                                     val: &[u16],
                                     num_symbols: u32)
                                     -> u32 {
  let mut table_size: u32 = 1;
  let goal_size: u32 = 1u32 << root_bits;
  assert!(num_symbols <= 4);
  if num_symbols == 0 {
    fast_mut!((table)[0]).bits = 0;
    fast_mut!((table)[0]).value = fast!((val)[0]);
  } else if num_symbols == 1 {
    fast_mut!((table)[0]).bits = 1;
    fast_mut!((table)[1]).bits = 1;
    if fast!((val)[1]) > fast!((val)[0]) {
      fast_mut!((table)[0]).value = fast!((val)[0]);
      fast_mut!((table)[1]).value = fast!((val)[1]);
    } else {
      fast_mut!((table)[0]).value = fast!((val)[1]);
      fast_mut!((table)[1]).value = fast!((val)[0]);
    }
    table_size = 2;
  } else if num_symbols == 2 {
    fast_mut!((table)[0]).bits = 1;
    fast_mut!((table)[0]).value = fast!((val)[0]);
    fast_mut!((table)[2]).bits = 1;
    fast_mut!((table)[2]).value = fast!((val)[0]);
    if fast!((val)[2]) > fast!((val)[1]) {
      fast_mut!((table)[1]).value = fast!((val)[1]);
      fast_mut!((table)[3]).value = fast!((val)[2]);
    } else {
      fast_mut!((table)[1]).value = fast!((val)[2]);
      fast_mut!((table)[3]).value = fast!((val)[1]);
    }
    fast_mut!((table)[1]).bits = 2;
    fast_mut!((table)[3]).bits = 2;
    table_size = 4;
  } else if num_symbols == 3 {
    let last: u16 = if val.len() > 3 { fast!((val)[3]) } else { 65535 };
    let mut mval: [u16; 4] = [fast!((val)[0]), fast!((val)[1]), fast!((val)[2]), last];
    for i in 0..3 {
      for k in i + 1..4 {
        if mval[k] < mval[i] {
          mval.swap(k, i);
        }
      }
    }
    for i in 0..4 {
      fast_mut!((table)[i]).bits = 2;
    }
    fast_mut!((table)[0]).value = mval[0];
    fast_mut!((table)[2]).value = mval[1];
    fast_mut!((table)[1]).value = mval[2];
    fast_mut!((table)[3]).value = mval[3];
    table_size = 4;
  } else if num_symbols == 4 {
    let mut mval: [u16; 4] = [fast!((val)[0]), fast!((val)[1]), fast!((val)[2]), fast!((val)[3])];
    if mval[3] < mval[2] {
      mval.swap(3, 2)
    }
    for i in 0..7 {
      fast_mut!((table)[i]).value = mval[0];
      fast_mut!((table)[i]).bits = (1 + (i & 1)) as u8;
    }
    fast_mut!((table)[1]).value = mval[1];
    fast_mut!((table)[3]).value = mval[2];
    fast_mut!((table)[5]).value = mval[1];
    fast_mut!((table)[7]).value = mval[3];
    fast_mut!((table)[3]).bits = 3;
    fast_mut!((table)[7]).bits = 3;
    table_size = 8;
  } else {
    assert!(false);
  }
  while table_size != goal_size {
    for index in 0..table_size {
      fast_mut!((table)[(table_size + index) as usize]) = fast!((table)[index as usize]);
    }
    table_size <<= 1;
  }
  goal_size
}