1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
use crate::inner_prelude::*;

pub use axgeom::Range;
pub use axgeom::Rect;

///The underlying number type used for the tree.
///It is auto implemented by all types that satisfy the type constraints.
///Notice that no arithmatic is possible. The tree is constructed
///using only comparisons and copying.
pub trait Num: PartialOrd + Copy + Default {}
impl<T> Num for T where T: PartialOrd + Copy + Default {}

///Trait to signify that this object has an axis aligned bounding box.
///Multiple calls to [`Aabb::get()`] must return a aabb with the same value.
///This is hard for the user not to do since the user
///does not have `&mut self`,
///but it is still possible through the use of static objects or `RefCell` / `Mutex`, etc.
///Using these type of methods the user could make different calls to get()
///return different aabbs.
///This is unsafe since we allow query algorithms to assume the following:
///If two object's aabb's don't intersect, then they can be mutated at the same time.
pub unsafe trait Aabb {
    type Num: Num;
    fn get(&self) -> &Rect<Self::Num>;
}

unsafe impl<N: Num> Aabb for Rect<N> {
    type Num = N;
    #[inline(always)]
    fn get(&self) -> &Rect<Self::Num> {
        self
    }
}

///A bounding box container object that implements [`Aabb`] and [`HasInner`].
///Note that `&mut BBox<N,T>` also implements [`Aabb`] and [`HasInner`].
///
///Using this one struct the user can construct the following types for bboxes to be inserted into the tree:
///
///* `BBox<N,T>`  (direct)
///* `&mut BBox<N,T>` (indirect)
///* `BBox<N,&mut T>` (rect direct, T indirect)
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct BBox<N, T> {
    pub rect: Rect<N>,
    pub inner: T,
}

impl<N, T> BBox<N, T> {
    ///Constructor. Also consider using [`crate::bbox()`]
    #[inline(always)]
    #[must_use]
    pub fn new(rect: Rect<N>, inner: T) -> BBox<N, T> {
        BBox { rect, inner }
    }
}

use core::convert::TryFrom;
impl<N: Copy, T> BBox<N, T> {
    ///Change the number type of the Rect using
    ///promitive cast.
    #[inline(always)]
    #[must_use]
    pub fn inner_as<B: 'static + Copy>(self) -> BBox<B, T>
    where
        N: num_traits::AsPrimitive<B>,
    {
        BBox {
            rect: self.rect.inner_as(),
            inner: self.inner,
        }
    }

    ///Change the number type using `From`
    #[inline(always)]
    #[must_use]
    pub fn inner_into<A: From<N>>(self) -> BBox<A, T> {
        BBox {
            rect: self.rect.inner_into(),
            inner: self.inner,
        }
    }

    ///Change the number type using `TryFrom`
    #[inline(always)]
    pub fn inner_try_into<A: TryFrom<N>>(self) -> Result<BBox<A, T>, A::Error> {
        Ok(BBox {
            rect: self.rect.inner_try_into()?,
            inner: self.inner,
        })
    }
}

unsafe impl<N: Num, T> Aabb for BBox<N, T> {
    type Num = N;
    #[inline(always)]
    fn get(&self) -> &Rect<Self::Num> {
        &self.rect
    }
}

unsafe impl<N: Num, T> HasInner for BBox<N, T> {
    type Inner = T;

    #[inline(always)]
    fn get_inner_mut(&mut self) -> (&Rect<N>, &mut Self::Inner) {
        (&self.rect, &mut self.inner)
    }
}

unsafe impl<N: Num, T> Aabb for &mut BBox<N, T> {
    type Num = N;
    #[inline(always)]
    fn get(&self) -> &Rect<Self::Num> {
        &self.rect
    }
}

unsafe impl<N: Num, T> HasInner for &mut BBox<N, T> {
    type Inner = T;

    #[inline(always)]
    fn get_inner_mut(&mut self) -> (&Rect<N>, &mut Self::Inner) {
        (&self.rect, &mut self.inner)
    }
}

///When we traverse the tree in read-only mode, we can simply return a reference to each node.
///We don't need to protect the user from only mutating parts of the BBox's since they can't
///change anything.
pub type Vistr<'a, N> = compt::dfs_order::Vistr<'a, N, compt::dfs_order::PreOrder>;

mod vistr_mut {
    use crate::inner_prelude::*;

    /// Tree Iterator that returns a protected mutable reference to each node.
    #[repr(transparent)]
    pub struct VistrMut<'a, N> {
        inner: compt::dfs_order::VistrMut<'a, N, compt::dfs_order::PreOrder>,
    }

    impl<'a, N> VistrMut<'a, N> {
        #[inline(always)]
        pub(crate) fn new(
            inner: compt::dfs_order::VistrMut<'a, N, compt::dfs_order::PreOrder>,
        ) -> Self {
            VistrMut { inner }
        }
        ///It is safe to borrow the iterator and then produce mutable references from that
        ///as long as by the time the borrow ends, all the produced references also go away.
        #[inline(always)]
        pub fn borrow_mut(&mut self) -> VistrMut<N> {
            VistrMut {
                inner: self.inner.borrow_mut(),
            }
        }

        #[inline(always)]
        pub fn get_height(&self)->usize{
            compt::FixedDepthVisitor::get_height(self)
        }

        #[inline(always)]
        pub fn into_slice(self) -> PMut<'a, [N]> {
            PMut::new(self.inner.into_slice())
        }
    }

    impl<'a, N> core::ops::Deref for VistrMut<'a, N> {
        type Target = Vistr<'a, N>;

        #[inline(always)]
        fn deref(&self) -> &Vistr<'a, N> {
            &self.inner
        }
    }

    unsafe impl<'a, N> compt::FixedDepthVisitor for VistrMut<'a, N> {}

    impl<'a, N> Visitor for VistrMut<'a, N> {
        type Item = PMut<'a, N>;

        #[inline(always)]
        fn next(self) -> (Self::Item, Option<[Self; 2]>) {
            let (nn, rest) = self.inner.next();

            let k = match rest {
                Some([left, right]) => Some([VistrMut { inner: left }, VistrMut { inner: right }]),
                None => None,
            };
            (PMut::new(nn), k)
        }

        #[inline(always)]
        fn level_remaining_hint(&self) -> (usize, Option<usize>) {
            self.inner.level_remaining_hint()
        }

        #[inline(always)]
        fn dfs_preorder(self, mut func: impl FnMut(Self::Item)) {
            self.inner.dfs_preorder(move |a| func(PMut::new(a)));
        }
    }
}
pub use vistr_mut::VistrMut;

///A Node in a Tree.
#[repr(C)]
pub(crate) struct NodePtr<T: Aabb> {
    _range: PMutPtr<[T]>,

    _cont: axgeom::Range<T::Num>,
    _div: Option<T::Num>,
}


///A node in [`Tree`].
#[repr(C)]
pub struct Node<'a, T: Aabb> {
    pub range: PMut<'a, [T]>,

    //if range is empty, then value is unspecified.
    //if range is not empty, then cont can be read.
    pub cont: axgeom::Range<T::Num>,

    //for non leafs:
    //  if there is a bot either in this node or in a child node, then div is some.
    //
    //for leafs:
    //  value is none
    pub div: Option<T::Num>,
}