Trait bridgetree::Hashable

source ·
pub trait Hashable: Sized {
    fn empty_leaf() -> Self;
    fn combine(level: Level, a: &Self, b: &Self) -> Self;

    fn empty_root(level: Level) -> Self { ... }
}
Expand description

A trait describing the operations that make a type suitable for use as a leaf or node value in a merkle tree.

Required Methods§

Provided Methods§

Examples found in repository?
src/lib.rs (line 200)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    pub fn root(&self, root_level: Option<Level>) -> H {
        let max_level = root_level.unwrap_or_else(|| self.position.root_level());
        self.position
            .witness_addrs(max_level)
            .fold(
                (self.leaf.clone(), Level::from(0)),
                |(digest, complete_lvl), (addr, source)| {
                    // fold up from complete_lvl to addr.level() pairing with empty roots; if
                    // complete_lvl == addr.level() this is just the complete digest to this point
                    let digest = complete_lvl
                        .iter_to(addr.level())
                        .fold(digest, |d, l| H::combine(l, &d, &H::empty_root(l)));

                    let res_digest = match source {
                        Source::Past(i) => H::combine(addr.level(), &self.ommers[i], &digest),
                        Source::Future => {
                            H::combine(addr.level(), &digest, &H::empty_root(addr.level()))
                        }
                    };

                    (res_digest, addr.level() + 1)
                },
            )
            .0
    }

    /// Constructs a witness for the leaf at the tip of this
    /// frontier, given a source of node values that complement this frontier.
    pub fn witness<F>(&self, depth: u8, bridge_value_at: F) -> Result<Vec<H>, WitnessingError>
    where
        F: Fn(Address) -> Option<H>,
    {
        // construct a complete trailing edge that includes the data from
        // the following frontier not yet included in the trailing edge.
        self.position()
            .witness_addrs(depth.into())
            .map(|(addr, source)| match source {
                Source::Past(i) => Ok(self.ommers[i].clone()),
                Source::Future => {
                    bridge_value_at(addr).ok_or(WitnessingError::BridgeAddressInvalid(addr))
                }
            })
            .collect::<Result<Vec<_>, _>>()
    }
}

/// A possibly-empty Merkle frontier.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct Frontier<H, const DEPTH: u8> {
    frontier: Option<NonEmptyFrontier<H>>,
}

impl<H, const DEPTH: u8> TryFrom<NonEmptyFrontier<H>> for Frontier<H, DEPTH> {
    type Error = FrontierError;
    fn try_from(f: NonEmptyFrontier<H>) -> Result<Self, FrontierError> {
        if f.position.root_level() <= Level::from(DEPTH) {
            Ok(Frontier { frontier: Some(f) })
        } else {
            Err(FrontierError::MaxDepthExceeded {
                depth: f.position.root_level().into(),
            })
        }
    }
}

impl<H, const DEPTH: u8> Frontier<H, DEPTH> {
    /// Constructs a new empty frontier.
    pub fn empty() -> Self {
        Self { frontier: None }
    }

    /// Constructs a new frontier from its constituent parts.
    ///
    /// Returns `None` if the new frontier would exceed the maximum
    /// allowed depth or if the list of ommers provided is not consistent
    /// with the position of the leaf.
    pub fn from_parts(position: Position, leaf: H, ommers: Vec<H>) -> Result<Self, FrontierError> {
        NonEmptyFrontier::from_parts(position, leaf, ommers).and_then(Self::try_from)
    }

    /// Return the wrapped NonEmptyFrontier reference, or None if
    /// the frontier is empty.
    pub fn value(&self) -> Option<&NonEmptyFrontier<H>> {
        self.frontier.as_ref()
    }

    /// Returns the amount of memory dynamically allocated for ommer
    /// values within the frontier.
    pub fn dynamic_memory_usage(&self) -> usize {
        self.frontier.as_ref().map_or(0, |f| {
            size_of::<usize>() + (f.ommers.capacity() + 1) * size_of::<H>()
        })
    }
}

impl<H: Hashable + Clone, const DEPTH: u8> Frontier<H, DEPTH> {
    /// Appends a new value to the frontier at the next available slot.
    /// Returns true if successful and false if the frontier would exceed
    /// the maximum allowed depth.
    pub fn append(&mut self, value: &H) -> bool {
        if let Some(frontier) = self.frontier.as_mut() {
            if frontier.position().is_complete_subtree(DEPTH.into()) {
                false
            } else {
                frontier.append(value.clone());
                true
            }
        } else {
            self.frontier = Some(NonEmptyFrontier::new(value.clone()));
            true
        }
    }

    /// Obtains the current root of this Merkle frontier by hashing
    /// against empty nodes up to the maximum height of the pruned
    /// tree that the frontier represents.
    pub fn root(&self) -> H {
        self.frontier
            .as_ref()
            .map_or(H::empty_root(DEPTH.into()), |frontier| {
                frontier.root(Some(DEPTH.into()))
            })
    }
}

/// The information required to "update" witnesses from one state of a Merkle tree to another.
///
/// The witness for a particular leaf of a Merkle tree consists of the siblings of that leaf, plus
/// the siblings of the parents of that leaf in a path to the root of the tree. When considering a
/// Merkle tree where leaves are appended to the tree in a linear fashion (rather than being
/// inserted at arbitrary positions), we often wish to produce a witness for a leaf that was
/// appended to the tree at some point in the past. A [`MerkleBridge`] from one position in the
/// tree to another position in the tree contains the minimal amount of information necessary to
/// produce a witness for the leaf at the former position, given that leaves have been subsequently
/// appended to reach the current position.
///
/// [`MerkleBridge`] values have a semigroup, such that the sum (`fuse`d) value of two successive
/// bridges, along with a [`NonEmptyFrontier`] with its tip at the prior position of the first bridge
/// being fused, can be used to produce a witness for the leaf at the tip of the prior frontier.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct MerkleBridge<H> {
    /// The position of the final leaf in the frontier of the bridge that this bridge is the
    /// successor of, or None if this is the first bridge in a tree.
    prior_position: Option<Position>,
    /// The set of addresses for which we are waiting to discover the ommers.  The values of this
    /// set and the keys of the `need` map should always be disjoint. Also, this set should
    /// never contain an address for which the sibling value has been discovered; at that point,
    /// the address is replaced in this set with its parent and the address/sibling pair is stored
    /// in `ommers`.
    ///
    /// Another way to consider the contents of this set is that the values that exist in
    /// `ommers`, combined with the values in previous bridges' `ommers` and an original leaf
    /// node, already contain all the values needed to compute the value at the given address.
    /// Therefore, we are tracking that address as we do not yet have enough information to compute
    /// its sibling without filling the sibling subtree with empty nodes.
    tracking: BTreeSet<Address>,
    /// A map from addresses that were being tracked to the values of their ommers that have been
    /// discovered while scanning this bridge's range by adding leaves to the bridge's frontier.
    ommers: BTreeMap<Address, H>,
    /// The leading edge of the bridge.
    frontier: NonEmptyFrontier<H>,
}

impl<H> MerkleBridge<H> {
    /// Construct a new Merkle bridge containing only the specified
    /// leaf.
    pub fn new(value: H) -> Self {
        Self {
            prior_position: None,
            tracking: BTreeSet::new(),
            ommers: BTreeMap::new(),
            frontier: NonEmptyFrontier::new(value),
        }
    }

    /// Construct a new Merkle bridge from its constituent parts.
    pub fn from_parts(
        prior_position: Option<Position>,
        tracking: BTreeSet<Address>,
        ommers: BTreeMap<Address, H>,
        frontier: NonEmptyFrontier<H>,
    ) -> Self {
        Self {
            prior_position,
            tracking,
            ommers,
            frontier,
        }
    }

    /// Returns the position of the final leaf in the frontier of the
    /// bridge that this bridge is the successor of, or None
    /// if this is the first bridge in a tree.
    pub fn prior_position(&self) -> Option<Position> {
        self.prior_position
    }

    /// Returns the position of the most recently appended leaf.
    pub fn position(&self) -> Position {
        self.frontier.position()
    }

    /// Returns the set of internal node addresses that we're searching
    /// for the ommers for.
    pub fn tracking(&self) -> &BTreeSet<Address> {
        &self.tracking
    }

    /// Returns the set of internal node addresses that we're searching
    /// for the ommers for.
    pub fn ommers(&self) -> &BTreeMap<Address, H> {
        &self.ommers
    }

    /// Returns the non-empty frontier of this Merkle bridge.
    pub fn frontier(&self) -> &NonEmptyFrontier<H> {
        &self.frontier
    }

    /// Returns the value of the most recently appended leaf.
    pub fn current_leaf(&self) -> &H {
        self.frontier.leaf()
    }

    /// Checks whether this bridge is a valid successor for the specified
    /// bridge.
    pub fn check_continuity(&self, next: &Self) -> Result<(), ContinuityError> {
        if let Some(pos) = next.prior_position {
            if pos == self.frontier.position() {
                Ok(())
            } else {
                Err(ContinuityError::PositionMismatch(
                    self.frontier.position(),
                    pos,
                ))
            }
        } else {
            Err(ContinuityError::PriorPositionNotFound)
        }
    }

    /// Returns the range of positions observed by this bridge.
    pub fn position_range(&self) -> Range<Position> {
        Range {
            start: self.prior_position.unwrap_or_else(|| Position::from(0)),
            end: self.position() + 1,
        }
    }
}

impl<'a, H: Hashable + Ord + Clone + 'a> MerkleBridge<H> {
    /// Constructs a new bridge to follow this one. If `mark_current_leaf` is true, the successor
    /// will track the information necessary to create a witness for the leaf most
    /// recently appended to this bridge's frontier.
    #[must_use]
    pub fn successor(&self, mark_current_leaf: bool) -> Self {
        let mut result = Self {
            prior_position: Some(self.frontier.position()),
            tracking: self.tracking.clone(),
            ommers: BTreeMap::new(),
            frontier: self.frontier.clone(),
        };

        if mark_current_leaf {
            result.track_current_leaf();
        }

        result
    }

    fn track_current_leaf(&mut self) {
        self.tracking
            .insert(Address::from(self.frontier.position()).current_incomplete());
    }

    /// Advances this bridge's frontier by appending the specified node,
    /// and updates any auth path ommers being tracked if necessary.
    pub fn append(&mut self, value: H) {
        self.frontier.append(value);

        let mut found = vec![];
        for address in self.tracking.iter() {
            // We know that there will only ever be one address that we're
            // tracking at a given level, because as soon as we find a
            // value for the sibling of the address we're tracking, we
            // remove the tracked address and replace it the next parent
            // of that address for which we need to find a sibling.
            if self
                .frontier()
                .position()
                .is_complete_subtree(address.level())
            {
                let digest = self.frontier.root(Some(address.level()));
                self.ommers.insert(address.sibling(), digest);
                found.push(*address);
            }
        }

        for address in found {
            self.tracking.remove(&address);

            // The address of the next incomplete parent note for which
            // we need to find a sibling.
            let parent = address.next_incomplete_parent();
            assert!(!self.ommers.contains_key(&parent));
            self.tracking.insert(parent);
        }
    }

    /// Returns a single MerkleBridge that contains the aggregate information
    /// of this bridge and `next`, or None if `next` is not a valid successor
    /// to this bridge. The resulting Bridge will have the same state as though
    /// `self` had had every leaf used to construct `next` appended to it
    /// directly.
    fn fuse(&self, next: &Self) -> Result<Self, ContinuityError> {
        self.check_continuity(next)?;

        Ok(Self {
            prior_position: self.prior_position,
            tracking: next.tracking.clone(),
            ommers: self
                .ommers
                .iter()
                .chain(next.ommers.iter())
                .map(|(k, v)| (*k, v.clone()))
                .collect(),
            frontier: next.frontier.clone(),
        })
    }

    /// Returns a single MerkleBridge that contains the aggregate information
    /// of all the provided bridges (discarding internal frontiers) or None
    /// if the provided iterator is empty. Returns a continuity error if
    /// any of the bridges are not valid successors to one another.
    fn fuse_all<T: Iterator<Item = &'a Self>>(
        mut iter: T,
    ) -> Result<Option<Self>, ContinuityError> {
        let mut fused = iter.next().cloned();
        for next in iter {
            fused = Some(fused.unwrap().fuse(next)?);
        }
        Ok(fused)
    }

    /// If this bridge contains sufficient auth fragment information, construct an authentication
    /// path for the specified position by interleaving with values from the prior frontier. This
    /// method will panic if the position of the prior frontier does not match this bridge's prior
    /// position.
    fn witness(
        &self,
        depth: u8,
        prior_frontier: &NonEmptyFrontier<H>,
    ) -> Result<Vec<H>, WitnessingError> {
        assert!(Some(prior_frontier.position()) == self.prior_position);

        prior_frontier.witness(depth, |addr| {
            let r = addr.position_range();
            if self.frontier.position() < r.start {
                Some(H::empty_root(addr.level()))
            } else if r.contains(&self.frontier.position()) {
                Some(self.frontier.root(Some(addr.level())))
            } else {
                // the frontier's position is after the end of the requested
                // range, so the requested value should exist in a stored
                // fragment
                self.ommers.get(&addr).cloned()
            }
        })
    }

    fn retain(&mut self, ommer_addrs: &BTreeSet<Address>) {
        // Prune away any ommers & tracking addresses we don't need
        self.tracking
            .retain(|addr| ommer_addrs.contains(&addr.sibling()));
        self.ommers.retain(|addr, _| ommer_addrs.contains(addr));
    }
}

/// A data structure used to store the information necessary to "rewind" the state of a
/// [`BridgeTree`] to a particular leaf position.
///
/// This is needed because the [`BridgeTree::marked_indices`] map is a cache of information that
/// crosses [`MerkleBridge`] boundaries, and so it is not sufficient to just truncate the list of
/// bridges; instead, we use [`Checkpoint`] values to be able to rapidly restore the cache to its
/// previous state.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct Checkpoint {
    /// The number of bridges that will be retained in a rewind.
    bridges_len: usize,
    /// A flag indicating whether or not the current state of the tree
    /// had been marked at the time the checkpoint was created.
    is_marked: bool,
    /// A set of the positions that have been marked during the period that this
    /// checkpoint is the current checkpoint.
    marked: BTreeSet<Position>,
    /// When a mark is forgotten, if the index of the forgotten mark is <= bridge_idx we
    /// record it in the current checkpoint so that on rollback, we restore the forgotten
    /// marks to the BridgeTree's "saved" list. If the mark was newly created since the
    /// checkpoint, we don't need to remember when we forget it because both the mark
    /// creation and removal will be reverted in the rollback.
    forgotten: BTreeMap<Position, usize>,
}

impl Checkpoint {
    /// Creates a new checkpoint from its constituent parts.
    pub fn from_parts(
        bridges_len: usize,
        is_marked: bool,
        marked: BTreeSet<Position>,
        forgotten: BTreeMap<Position, usize>,
    ) -> Self {
        Self {
            bridges_len,
            is_marked,
            marked,
            forgotten,
        }
    }

    /// Creates a new empty checkpoint for the specified [`BridgeTree`] state.
    pub fn at_length(bridges_len: usize, is_marked: bool) -> Self {
        Checkpoint {
            bridges_len,
            is_marked,
            marked: BTreeSet::new(),
            forgotten: BTreeMap::new(),
        }
    }

    /// Returns the length of the [`BridgeTree::prior_bridges`] vector of the [`BridgeTree`] to
    /// which this checkpoint refers.
    ///
    /// This is the number of bridges that will be retained in the event of a rewind to this
    /// checkpoint.
    pub fn bridges_len(&self) -> usize {
        self.bridges_len
    }

    /// Returns whether the current state of the tree had been marked at the point that
    /// this checkpoint was made.
    ///
    /// In the event of a rewind, the rewind logic will ensure that mark information is
    /// properly reconstituted for the checkpointed tree state.
    pub fn is_marked(&self) -> bool {
        self.is_marked
    }

    /// Returns a set of the positions that have been marked during the period that this
    /// checkpoint is the current checkpoint.
    pub fn marked(&self) -> &BTreeSet<Position> {
        &self.marked
    }

    /// Returns the set of previously-marked positions that have had their marks removed
    /// during the period that this checkpoint is the current checkpoint.
    pub fn forgotten(&self) -> &BTreeMap<Position, usize> {
        &self.forgotten
    }

    // A private convenience method that returns the root of the bridge corresponding to
    // this checkpoint at a specified depth, given the slice of bridges from which this checkpoint
    // was derived.
    fn root<H>(&self, bridges: &[MerkleBridge<H>], level: Level) -> H
    where
        H: Hashable + Clone + Ord,
    {
        if self.bridges_len == 0 {
            H::empty_root(level)
        } else {
            bridges[self.bridges_len - 1].frontier().root(Some(level))
        }
    }

    // A private convenience method that returns the position of the bridge corresponding
    // to this checkpoint, if the checkpoint is not for the empty bridge.
    fn position<H: Ord>(&self, bridges: &[MerkleBridge<H>]) -> Option<Position> {
        if self.bridges_len == 0 {
            None
        } else {
            Some(bridges[self.bridges_len - 1].position())
        }
    }

    // A private method that rewrites the indices of each forgotten marked record
    // using the specified rewrite function. Used during garbage collection.
    fn rewrite_indices<F: Fn(usize) -> usize>(&mut self, f: F) {
        self.bridges_len = f(self.bridges_len);
        for v in self.forgotten.values_mut() {
            *v = f(*v)
        }
    }
}

/// A sparse representation of a Merkle tree with linear appending of leaves that contains enough
/// information to produce a witness for any `mark`ed leaf.
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct BridgeTree<H, const DEPTH: u8> {
    /// The ordered list of Merkle bridges representing the history
    /// of the tree. There will be one bridge for each saved leaf.
    prior_bridges: Vec<MerkleBridge<H>>,
    /// The current (mutable) bridge at the tip of the tree.
    current_bridge: Option<MerkleBridge<H>>,
    /// A map from positions for which we wish to be able to compute a
    /// witness to index in the bridges vector.
    saved: BTreeMap<Position, usize>,
    /// A stack of bridge indices to which it's possible to rewind directly.
    checkpoints: Vec<Checkpoint>,
    /// The maximum number of checkpoints to retain. If this number is
    /// exceeded, the oldest checkpoint will be dropped when creating
    /// a new checkpoint.
    max_checkpoints: usize,
}

impl<H: Hashable + Ord + Debug, const DEPTH: u8> Debug for BridgeTree<H, DEPTH> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(
            f,
            "BridgeTree {{\n  depth: {:?},\n  prior_bridges: {:?},\n  current_bridge: {:?},\n  saved: {:?},\n  checkpoints: {:?},\n  max_checkpoints: {:?}\n}}",
            DEPTH, self.prior_bridges, self.current_bridge, self.saved, self.checkpoints, self.max_checkpoints
        )
    }
}

/// Errors that can appear when validating the internal consistency of a `[BridgeTree]`
/// value when constructing a tree from its constituent parts.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum BridgeTreeError {
    IncorrectIncompleteIndex,
    InvalidMarkIndex(usize),
    PositionMismatch { expected: Position, found: Position },
    InvalidSavePoints,
    Discontinuity(ContinuityError),
    CheckpointMismatch,
}

impl<H, const DEPTH: u8> BridgeTree<H, DEPTH> {
    /// Construct an empty BridgeTree value with the specified maximum number of checkpoints.
    pub fn new(max_checkpoints: usize) -> Self {
        Self {
            prior_bridges: vec![],
            current_bridge: None,
            saved: BTreeMap::new(),
            checkpoints: vec![],
            max_checkpoints,
        }
    }

    /// Removes the oldest checkpoint. Returns true if successful and false if
    /// there are no checkpoints.
    fn drop_oldest_checkpoint(&mut self) -> bool {
        if self.checkpoints.is_empty() {
            false
        } else {
            self.checkpoints.remove(0);
            true
        }
    }

    /// Returns the prior bridges that make up this tree
    pub fn prior_bridges(&self) -> &[MerkleBridge<H>] {
        &self.prior_bridges
    }

    /// Returns the current bridge at the tip of this tree
    pub fn current_bridge(&self) -> &Option<MerkleBridge<H>> {
        &self.current_bridge
    }

    /// Returns the map from leaf positions that have been marked to the index of
    /// the bridge whose tip is at that position in this tree's list of bridges.
    pub fn marked_indices(&self) -> &BTreeMap<Position, usize> {
        &self.saved
    }

    /// Returns the checkpoints to which this tree may be rewound.
    pub fn checkpoints(&self) -> &[Checkpoint] {
        &self.checkpoints
    }

    /// Returns the maximum number of checkpoints that will be maintained
    /// by the data structure. When this number of checkpoints is exceeded,
    /// the oldest checkpoints are discarded when creating new checkpoints.
    pub fn max_checkpoints(&self) -> usize {
        self.max_checkpoints
    }

    /// Returns the bridge's frontier.
    pub fn frontier(&self) -> Option<&NonEmptyFrontier<H>> {
        self.current_bridge.as_ref().map(|b| b.frontier())
    }
}

impl<H: Hashable + Ord + Clone, const DEPTH: u8> BridgeTree<H, DEPTH> {
    /// Construct a new BridgeTree that will start recording changes from the state of
    /// the specified frontier.
    pub fn from_frontier(max_checkpoints: usize, frontier: NonEmptyFrontier<H>) -> Self {
        Self {
            prior_bridges: vec![],
            current_bridge: Some(MerkleBridge::from_parts(
                None,
                BTreeSet::new(),
                BTreeMap::new(),
                frontier,
            )),
            saved: BTreeMap::new(),
            checkpoints: vec![],
            max_checkpoints,
        }
    }

    /// Construct a new BridgeTree from its constituent parts, checking for internal
    /// consistency.
    pub fn from_parts(
        prior_bridges: Vec<MerkleBridge<H>>,
        current_bridge: Option<MerkleBridge<H>>,
        saved: BTreeMap<Position, usize>,
        checkpoints: Vec<Checkpoint>,
        max_checkpoints: usize,
    ) -> Result<Self, BridgeTreeError> {
        Self::check_consistency_internal(
            &prior_bridges,
            &current_bridge,
            &saved,
            &checkpoints,
            max_checkpoints,
        )?;
        Ok(BridgeTree {
            prior_bridges,
            current_bridge,
            saved,
            checkpoints,
            max_checkpoints,
        })
    }

    fn check_consistency(&self) -> Result<(), BridgeTreeError> {
        Self::check_consistency_internal(
            &self.prior_bridges,
            &self.current_bridge,
            &self.saved,
            &self.checkpoints,
            self.max_checkpoints,
        )
    }

    fn check_consistency_internal(
        prior_bridges: &[MerkleBridge<H>],
        current_bridge: &Option<MerkleBridge<H>>,
        saved: &BTreeMap<Position, usize>,
        checkpoints: &[Checkpoint],
        max_checkpoints: usize,
    ) -> Result<(), BridgeTreeError> {
        // check that saved values correspond to bridges
        for (pos, i) in saved {
            if i >= &prior_bridges.len() {
                return Err(BridgeTreeError::InvalidMarkIndex(*i));
            }
            let found = prior_bridges[*i].position();
            if &found != pos {
                return Err(BridgeTreeError::PositionMismatch {
                    expected: *pos,
                    found,
                });
            }
        }

        if checkpoints.len() > max_checkpoints
            || checkpoints
                .iter()
                .any(|c| c.bridges_len > prior_bridges.len())
        {
            return Err(BridgeTreeError::CheckpointMismatch);
        }

        for (prev, next) in prior_bridges.iter().zip(prior_bridges.iter().skip(1)) {
            prev.check_continuity(next)
                .map_err(BridgeTreeError::Discontinuity)?;
        }

        if let Some((prev, next)) = prior_bridges.last().zip(current_bridge.as_ref()) {
            prev.check_continuity(next)
                .map_err(BridgeTreeError::Discontinuity)?;
        }

        Ok(())
    }

    /// Appends a new value to the tree at the next available slot.
    /// Returns true if successful and false if the tree would exceed
    /// the maximum allowed depth.
    pub fn append(&mut self, value: &H) -> bool {
        if let Some(bridge) = self.current_bridge.as_mut() {
            if bridge
                .frontier
                .position()
                .is_complete_subtree(Level::from(DEPTH))
            {
                false
            } else {
                bridge.append(value.clone());
                true
            }
        } else {
            self.current_bridge = Some(MerkleBridge::new(value.clone()));
            true
        }
    }

    /// Obtains the root of the Merkle tree at the specified checkpoint depth
    /// by hashing against empty nodes up to the maximum height of the tree.
    /// Returns `None` if there are not enough checkpoints available to reach the
    /// requested checkpoint depth.
    pub fn root(&self, checkpoint_depth: usize) -> Option<H> {
        let root_level = Level::from(DEPTH);
        if checkpoint_depth == 0 {
            Some(
                self.current_bridge
                    .as_ref()
                    .map_or(H::empty_root(root_level), |bridge| {
                        bridge.frontier().root(Some(root_level))
                    }),
            )
        } else if self.checkpoints.len() >= checkpoint_depth {
            let checkpoint_idx = self.checkpoints.len() - checkpoint_depth;
            self.checkpoints
                .get(checkpoint_idx)
                .map(|c| c.root(&self.prior_bridges, root_level))
        } else {
            None
        }
    }

Implementors§