1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//! SAC agent.
use crate::agent::{
    tch::{
        model::{ModelBase, SubModel, SubModel2},
        sac::{actor::Actor, critic::Critic, ent_coef::EntCoef},
        util::track,
        ReplayBuffer, TchBatch, TchBuffer,
    },
    CriticLoss, OptIntervalCounter,
};
use border_core::{
    record::{Record, RecordValue},
    Agent, Env, Policy, Step,
};
use log::trace;
use std::{cell::RefCell, error::Error, fs, marker::PhantomData, path::Path};
use tch::{no_grad, Tensor};

type ActionValue = Tensor;
type ActMean = Tensor;
type ActStd = Tensor;

fn normal_logp(x: &Tensor) -> Tensor {
    let tmp: Tensor =
        Tensor::from(-0.5 * (2.0 * std::f32::consts::PI).ln() as f32) - 0.5 * x.pow(2);
    tmp.sum1(&[-1], false, tch::Kind::Float)
}

/// Soft actor critic agent.
#[allow(clippy::upper_case_acronyms)]
pub struct SAC<E, Q, P, O, A>
where
    E: Env,
    Q: SubModel2<Output = ActionValue>,
    P: SubModel<Output = (ActMean, ActStd)>,
    O: TchBuffer<Item = E::Obs>,
    A: TchBuffer<Item = E::Act>,
{
    pub(in crate::agent::tch::sac) qnets: Vec<Critic<Q>>,
    pub(in crate::agent::tch::sac) qnets_tgt: Vec<Critic<Q>>,
    pub(in crate::agent::tch::sac) pi: Actor<P>,
    pub(in crate::agent::tch::sac) replay_buffer: ReplayBuffer<E, O, A>,
    pub(in crate::agent::tch::sac) gamma: f64,
    pub(in crate::agent::tch::sac) tau: f64,
    pub(in crate::agent::tch::sac) ent_coef: EntCoef,
    pub(in crate::agent::tch::sac) epsilon: f64,
    pub(in crate::agent::tch::sac) min_lstd: f64,
    pub(in crate::agent::tch::sac) max_lstd: f64,
    pub(in crate::agent::tch::sac) opt_interval_counter: OptIntervalCounter,
    pub(in crate::agent::tch::sac) n_updates_per_opt: usize,
    pub(in crate::agent::tch::sac) min_transitions_warmup: usize,
    pub(in crate::agent::tch::sac) batch_size: usize,
    pub(in crate::agent::tch::sac) train: bool,
    pub(in crate::agent::tch::sac) reward_scale: f32,
    pub(in crate::agent::tch::sac) critic_loss: CriticLoss,
    pub(in crate::agent::tch::sac) prev_obs: RefCell<Option<E::Obs>>,
    pub(in crate::agent::tch::sac) phantom: PhantomData<E>,
    pub(in crate::agent::tch::sac) device: tch::Device,
}

impl<E, Q, P, O, A> SAC<E, Q, P, O, A>
where
    E: Env,
    Q: SubModel2<Input1 = O::SubBatch, Input2 = A::SubBatch, Output = ActionValue>,
    P: SubModel<Input = O::SubBatch, Output = (ActMean, ActStd)>,
    E::Obs: Into<O::SubBatch>,
    E::Act: From<Tensor>,
    O: TchBuffer<Item = E::Obs>,
    A: TchBuffer<Item = E::Act, SubBatch = Tensor>,
{
    // Adapted from dqn.rs
    fn push_transition(&mut self, step: Step<E>) {
        let next_obs = step.obs;
        let obs = self.prev_obs.replace(None).unwrap();
        let reward = Tensor::of_slice(&step.reward[..]);
        let not_done = Tensor::from(1f32) - Tensor::of_slice(&step.is_done[..]);
        self.replay_buffer
            .push(&obs, &step.act, &reward, &next_obs, &not_done);
        let _ = self.prev_obs.replace(Some(next_obs));
    }

    fn action_logp(&self, o: &P::Input) -> (A::SubBatch, Tensor) {
        trace!("SAC::action_logp()");

        let (mean, lstd) = self.pi.forward(o);
        let std = lstd.clip(self.min_lstd, self.max_lstd).exp();
        let z = Tensor::randn(mean.size().as_slice(), tch::kind::FLOAT_CPU).to(self.device);
        let a = (&std * &z + &mean).tanh();
        let log_p = normal_logp(&z)
            - (Tensor::from(1f32) - a.pow(2.0) + Tensor::from(self.epsilon))
                .log()
                .sum1(&[-1], false, tch::Kind::Float);

        debug_assert_eq!(a.size().as_slice()[0], self.batch_size as i64);
        debug_assert_eq!(log_p.size().as_slice(), [self.batch_size as i64]);

        (a, log_p)
    }

    fn qvals(&self, qnets: &[Critic<Q>], obs: &Q::Input1, act: &Tensor) -> Vec<Tensor> {
        qnets
            .iter()
            .map(|qnet| qnet.forward(obs, act).squeeze())
            .collect()
    }

    /// Returns the minimum values of q values over critics
    fn qvals_min(&self, qnets: &[Critic<Q>], obs: &Q::Input1, act: &Tensor) -> Tensor {
        let qvals = self.qvals(qnets, obs, act);
        let qvals = Tensor::vstack(&qvals);
        let qvals_min = qvals.min2(0, false).0;

        debug_assert_eq!(qvals_min.size().as_slice(), [self.batch_size as i64]);

        qvals_min
    }

    // /// Returns the minimum values of q values over critics
    // fn qvals_mean(&self, qnets: &[Q], obs: &Tensor, act: &Tensor) -> Tensor {
    //     let qvals = self.qvals(qnets, obs, act);
    //     let qvals = Tensor::vstack(&qvals);
    //     let qvals_mean = qvals.mean1(&[0], false, tch::Kind::Float);

    //     debug_assert_eq!(qvals_mean.size().as_slice(), [self.batch_size as i64]);

    //     qvals_mean
    // }

    fn update_critic(&mut self, batch: &TchBatch<E, O, A>) -> f32 {
        trace!("SAC::update_critic()");

        let losses = {
            let o = &batch.obs;
            let a = &batch.actions.to(self.device);
            let next_o = &batch.next_obs;
            let r = &batch.rewards.to(self.device).squeeze();
            let not_done = &batch.not_dones.to(self.device).squeeze();

            let preds = self.qvals(&self.qnets, &o, &a);
            let tgt = {
                let next_q = no_grad(|| {
                    let (next_a, next_log_p) = self.action_logp(&next_o);
                    let next_q = self.qvals_min(&self.qnets_tgt, &next_o, &next_a);
                    next_q - self.ent_coef.alpha() * next_log_p
                });
                self.reward_scale * r + not_done * Tensor::from(self.gamma) * next_q
            };

            debug_assert_eq!(tgt.size().as_slice(), [self.batch_size as i64]);

            let losses: Vec<_> = match self.critic_loss {
                CriticLoss::MSE => preds
                    .iter()
                    .map(|pred| pred.mse_loss(&tgt, tch::Reduction::Mean))
                    .collect(),
                CriticLoss::SmoothL1 => preds
                    .iter()
                    .map(|pred| pred.smooth_l1_loss(&tgt, tch::Reduction::Mean, 1.0))
                    .collect(),
            };

            losses
        };

        for (qnet, loss) in self.qnets.iter_mut().zip(&losses) {
            qnet.backward_step(&loss);
        }

        losses.iter().map(f32::from).sum::<f32>() / (self.qnets.len() as f32)
    }

    fn update_actor(&mut self, batch: &TchBatch<E, O, A>) -> f32 {
        trace!("SAC::update_actor()");

        let loss = {
            let o = &batch.obs;
            let (a, log_p) = self.action_logp(o);

            // Update the entropy coefficient
            self.ent_coef.update(&log_p);

            // let qval = self.qvals_mean(&self.qnets, o, &a);
            let qval = self.qvals_min(&self.qnets, o, &a);
            (self.ent_coef.alpha() * &log_p - &qval).mean(tch::Kind::Float)
        };

        self.pi.backward_step(&loss);

        f32::from(loss)
    }

    fn soft_update(&mut self) {
        for (qnet_tgt, qnet) in self.qnets_tgt.iter_mut().zip(&mut self.qnets) {
            track(qnet_tgt, qnet, self.tau);
        }
    }
}

impl<E, Q, P, O, A> Policy<E> for SAC<E, Q, P, O, A>
where
    E: Env,
    Q: SubModel2<Input1 = O::SubBatch, Input2 = A::SubBatch, Output = ActionValue>,
    P: SubModel<Input = O::SubBatch, Output = (ActMean, ActStd)>,
    E::Obs: Into<O::SubBatch>,
    E::Act: From<Tensor>,
    O: TchBuffer<Item = E::Obs>,
    A: TchBuffer<Item = E::Act, SubBatch = Tensor>,
{
    fn sample(&mut self, obs: &E::Obs) -> E::Act {
        let obs = obs.clone().into();
        let (mean, lstd) = self.pi.forward(&obs);
        let std = lstd.clip(self.min_lstd, self.max_lstd).exp();
        let act = if self.train {
            std * Tensor::randn(&mean.size(), tch::kind::FLOAT_CPU).to(self.device) + mean
        } else {
            mean
        };
        act.tanh().into()
    }
}

impl<E, Q, P, O, A> Agent<E> for SAC<E, Q, P, O, A>
where
    E: Env,
    Q: SubModel2<Input1 = O::SubBatch, Input2 = A::SubBatch, Output = ActionValue>,
    P: SubModel<Input = O::SubBatch, Output = (ActMean, ActStd)>,
    E::Obs: Into<O::SubBatch>,
    E::Act: From<Tensor>,
    O: TchBuffer<Item = E::Obs>,
    A: TchBuffer<Item = E::Act, SubBatch = Tensor>,
{
    fn train(&mut self) {
        self.train = true;
    }

    fn eval(&mut self) {
        self.train = false;
    }

    fn is_train(&self) -> bool {
        self.train
    }

    fn push_obs(&self, obs: &E::Obs) {
        self.prev_obs.replace(Some(obs.clone()));
    }

    /// Update model parameters.
    ///
    /// When the return value is `Some(Record)`, it includes:
    /// * `loss_critic`: Loss of critic
    /// * `loss_actor`: Loss of actor
    fn observe(&mut self, step: Step<E>) -> Option<Record> {
        trace!("SAC::observe()");

        // Check if doing optimization
        let do_optimize = self.opt_interval_counter.do_optimize(&step.is_done)
            && self.replay_buffer.len() + 1 >= self.min_transitions_warmup;

        // Push transition to the replay buffer
        self.push_transition(step);
        trace!("Push transition");

        // Do optimization
        if do_optimize {
            let mut loss_critic = 0f32;
            let mut loss_actor = 0f32;

            for _ in 0..self.n_updates_per_opt {
                let batch = self.replay_buffer.random_batch(self.batch_size).unwrap();

                loss_critic += self.update_critic(&batch);
                loss_actor += self.update_actor(&batch);
                self.soft_update();
            }

            Some(Record::from_slice(&[
                ("loss_critic", RecordValue::Scalar(loss_critic)),
                ("loss_actor", RecordValue::Scalar(loss_actor)),
                (
                    "ent_coef",
                    RecordValue::Scalar(self.ent_coef.alpha().double_value(&[0]) as f32),
                ),
            ]))
        } else {
            None
        }
    }

    fn save<T: AsRef<Path>>(&self, path: T) -> Result<(), Box<dyn Error>> {
        // TODO: consider to rename the path if it already exists
        fs::create_dir_all(&path)?;
        for (i, (qnet, qnet_tgt)) in self.qnets.iter().zip(&self.qnets_tgt).enumerate() {
            qnet.save(&path.as_ref().join(format!("qnet_{}.pt", i)).as_path())?;
            qnet_tgt.save(&path.as_ref().join(format!("qnet_tgt_{}.pt", i)).as_path())?;
        }
        self.pi.save(&path.as_ref().join("pi.pt").as_path())?;
        self.ent_coef
            .save(&path.as_ref().join("ent_coef.pt").as_path())?;
        Ok(())
    }

    fn load<T: AsRef<Path>>(&mut self, path: T) -> Result<(), Box<dyn Error>> {
        for (i, (qnet, qnet_tgt)) in self.qnets.iter_mut().zip(&mut self.qnets_tgt).enumerate() {
            qnet.load(&path.as_ref().join(format!("qnet_{}.pt", i)).as_path())?;
            qnet_tgt.load(&path.as_ref().join(format!("qnet_tgt_{}.pt", i)).as_path())?;
        }
        self.pi.load(&path.as_ref().join("pi.pt").as_path())?;
        self.ent_coef
            .load(&path.as_ref().join("ent_coef.pt").as_path())?;
        Ok(())
    }
}