1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// boolean_expression: a Rust crate for Boolean expressions and BDDs.
//
// Copyright (c) 2016 Chris Fallin <cfallin@c1f.net>. Released under the MIT
// License.
//

use std::collections::HashMap;
use std::fmt::Debug;
use std::cmp::Ord;
use std::hash::Hash;

use simplify;

/// An `Expr` is a simple Boolean logic expression. It may contain terminals
/// (i.e., free variables), constants, and the following fundamental operations:
/// AND, OR, NOT.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Expr<T>
where
    T: Clone + Debug + Eq + Ord + Hash,
{
    /// A terminal (free variable). This expression node represents a value that
    /// is not known until evaluation time.
    Terminal(T),
    /// A boolean constant: true or false.
    Const(bool),

    /// The logical complement of the contained expression argument.
    Not(Box<Expr<T>>),

    /// The logical AND of the two expression arguments.
    And(Box<Expr<T>>, Box<Expr<T>>),

    /// The logical OR of the two expression arguments.
    Or(Box<Expr<T>>, Box<Expr<T>>),
}

impl<T> Expr<T>
where
    T: Clone + Debug + Eq + Ord + Hash,
{
    /// Returns `true` if this `Expr` is a terminal.
    pub fn is_terminal(&self) -> bool {
        match self {
            &Expr::Terminal(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if this `Expr` is a constant.
    pub fn is_const(&self) -> bool {
        match self {
            &Expr::Const(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if this `Expr` is a NOT node.
    pub fn is_not(&self) -> bool {
        match self {
            &Expr::Not(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if this `Expr` is an AND node.
    pub fn is_and(&self) -> bool {
        match self {
            &Expr::And(_, _) => true,
            _ => false,
        }
    }

    /// Returns `true` if this `Expr` is an OR node.
    pub fn is_or(&self) -> bool {
        match self {
            &Expr::Or(_, _) => true,
            _ => false,
        }
    }

    /// Builds a NOT node around an argument, consuming the argument
    /// expression.
    pub fn not(e: Expr<T>) -> Expr<T> {
        Expr::Not(Box::new(e))
    }

    /// Builds an AND node around two arguments, consuming the argument
    /// expressions.
    pub fn and(e1: Expr<T>, e2: Expr<T>) -> Expr<T> {
        Expr::And(Box::new(e1), Box::new(e2))
    }

    /// Builds an OR node around two arguments, consuming the argument
    /// expressions.
    pub fn or(e1: Expr<T>, e2: Expr<T>) -> Expr<T> {
        Expr::Or(Box::new(e1), Box::new(e2))
    }

    /// Evaluates the expression with a particular set of terminal assignments.
    /// If any terminals are not assigned, they default to `false`.
    pub fn evaluate(&self, vals: &HashMap<T, bool>) -> bool {
        match self {
            &Expr::Terminal(ref t) => *vals.get(t).unwrap_or(&false),
            &Expr::Const(val) => val,
            &Expr::And(ref a, ref b) => a.evaluate(vals) && b.evaluate(vals),
            &Expr::Or(ref a, ref b) => a.evaluate(vals) || b.evaluate(vals),
            &Expr::Not(ref x) => !x.evaluate(vals),
        }
    }

    /// Simplify an expression in a relatively cheap way using well-known logic
    /// identities.
    ///
    /// This function performs certain reductions using DeMorgan's Law,
    /// distribution of ANDs over ORs, and certain identities involving
    /// constants, to simplify an expression. The result will always be in
    /// sum-of-products form: nodes will always appear in order (from
    /// expression tree root to leaves) `OR -> AND -> NOT`. In other words,
    /// `AND` nodes may only have `NOT` nodes (or terminals or constants) as
    /// children, and `NOT` nodes may only have terminals or constants as
    /// children.
    ///
    /// This function explicitly does *not* perform any sort of minterm reduction.
    /// The terms may thus be redundant (i.e., `And(a, b)` may appear twice), and
    /// combinable terms may exist (i.e., `And(a, b)` and `And(a, Not(b))` may
    /// appear in the `OR`'d list of terms, where these could be combined to
    /// simply `a` but are not). For example:
    ///
    /// ```
    /// use boolean_expression::Expr;
    ///
    /// // This simplifies using DeMorgan's Law:
    /// let expr = Expr::not(Expr::or(Expr::Terminal(0), Expr::Terminal(1)));
    /// let simplified = expr.simplify_via_laws();
    /// assert_eq!(simplified,
    ///     Expr::and(Expr::not(Expr::Terminal(0)),
    ///               Expr::not(Expr::Terminal(1))));
    ///
    /// // This doesn't simplify, though:
    /// let expr = Expr::or(
    ///             Expr::and(Expr::Terminal(0), Expr::Terminal(1)),
    ///             Expr::and(Expr::Terminal(0), Expr::not(Expr::Terminal(1))));
    /// let simplified = expr.clone().simplify_via_laws();
    /// assert_eq!(simplified, expr);
    /// ```
    ///
    /// For better (but more expensive) simplification, see `simplify_via_bdd()`.
    pub fn simplify_via_laws(self) -> Expr<T> {
        simplify::simplify_via_laws(self)
    }

    /// Simplify an expression via a roundtrip through a `BDD`. This procedure
    /// is more effective than `Expr::simplify_via_laws()`, but more expensive.
    /// This roundtrip will implicitly simplify an arbitrarily complicated
    /// function (by construction, as the BDD is built), and then find a
    /// quasi-minimal set of terms using cubelist-based reduction. For example:
    ///
    /// ```
    /// use boolean_expression::Expr;
    ///
    /// // `simplify_via_laws()` cannot combine these terms, but
    /// // `simplify_via_bdd()` will:
    /// let expr = Expr::or(
    ///             Expr::and(Expr::Terminal(0), Expr::Terminal(1)),
    ///             Expr::and(Expr::Terminal(0), Expr::not(Expr::Terminal(1))));
    /// let simplified = expr.simplify_via_bdd();
    /// assert_eq!(simplified, Expr::Terminal(0));
    /// ```
    pub fn simplify_via_bdd(self) -> Expr<T> {
        simplify::simplify_via_bdd(self)
    }

    /// Map terminal values using the specified mapping function.
    pub fn map<F, R>(&self, f: F) -> Expr<R>
    where
        F: Fn(&T) -> R,
        R: Clone + Debug + Eq + Ord + Hash,
    {
        self.map1(&f)
    }

    fn map1<F, R>(&self, f: &F) -> Expr<R>
    where
        F: Fn(&T) -> R,
        R: Clone + Debug + Eq + Ord + Hash,
    {
        match self {
            &Expr::Terminal(ref t) => Expr::Terminal(f(t)),
            &Expr::Const(val) => Expr::Const(val),
            &Expr::Not(ref n) => Expr::not(n.map1(f)),
            &Expr::And(ref a, ref b) => Expr::and(a.map1(f), b.map1(f)),
            &Expr::Or(ref a, ref b) => Expr::or(a.map1(f), b.map1(f)),
        }
    }
}