1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
//! This module implements the `JsObject` structure.
//!
//! The `JsObject` is a garbage collected Object.

use super::{
    internal_methods::{InternalMethodContext, InternalObjectMethods, ORDINARY_INTERNAL_METHODS},
    shape::RootShape,
    JsPrototype, NativeObject, Object, PrivateName, PropertyMap,
};
use crate::{
    builtins::{
        array::ARRAY_EXOTIC_INTERNAL_METHODS,
        array_buffer::{ArrayBuffer, BufferObject, SharedArrayBuffer},
        object::OrdinaryObject,
    },
    context::intrinsics::Intrinsics,
    error::JsNativeError,
    js_string,
    property::{PropertyDescriptor, PropertyKey},
    string::utf16,
    value::PreferredType,
    Context, JsResult, JsString, JsValue,
};
use boa_gc::{self, Finalize, Gc, GcBox, GcRefCell, Trace};
use std::{
    cell::RefCell,
    collections::HashMap,
    error::Error,
    fmt::{self, Debug, Display},
    hash::Hash,
    ptr::NonNull,
    result::Result as StdResult,
};
use thin_vec::ThinVec;

/// A wrapper type for an immutably borrowed type T.
pub type Ref<'a, T> = boa_gc::GcRef<'a, T>;

/// A wrapper type for a mutably borrowed type T.
pub type RefMut<'a, T, U> = boa_gc::GcRefMut<'a, T, U>;

/// An `Object` with inner data set to `dyn NativeObject`.
pub type ErasedObject = Object<dyn NativeObject>;

pub(crate) type ErasedVTableObject = VTableObject<dyn NativeObject>;

/// Garbage collected `Object`.
#[derive(Trace, Finalize)]
#[boa_gc(unsafe_no_drop)]
pub struct JsObject<T: NativeObject + ?Sized = dyn NativeObject> {
    inner: Gc<VTableObject<T>>,
}

impl<T: NativeObject + ?Sized> Clone for JsObject<T> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
        }
    }
}

/// An `Object` that has an additional `vtable` with its internal methods.
// We have to skip implementing `Debug` for this because not using the
// implementation of `Debug` for `JsObject` could easily cause stack overflows,
// so we have to force our users to debug the `JsObject` instead.
#[allow(missing_debug_implementations)]
#[derive(Trace, Finalize)]
pub(crate) struct VTableObject<T: NativeObject + ?Sized> {
    #[unsafe_ignore_trace]
    vtable: &'static InternalObjectMethods,
    object: GcRefCell<Object<T>>,
}

impl Default for JsObject {
    fn default() -> Self {
        Self::from_proto_and_data(None, OrdinaryObject)
    }
}

impl JsObject {
    /// Creates a new `JsObject` from its inner object and its vtable.
    pub(crate) fn from_object_and_vtable<T: NativeObject>(
        object: Object<T>,
        vtable: &'static InternalObjectMethods,
    ) -> Self {
        let gc = Gc::new(VTableObject {
            object: GcRefCell::new(object),
            vtable,
        });

        Self {
            inner: coerce_gc(gc),
        }
    }

    /// Creates a new ordinary object with its prototype set to the `Object` prototype.
    ///
    /// This is equivalent to calling the specification's abstract operation
    /// [`OrdinaryObjectCreate(%Object.prototype%)`][call].
    ///
    /// [call]: https://tc39.es/ecma262/#sec-ordinaryobjectcreate
    #[inline]
    #[must_use]
    pub fn with_object_proto(intrinsics: &Intrinsics) -> Self {
        Self::from_proto_and_data(
            intrinsics.constructors().object().prototype(),
            OrdinaryObject,
        )
    }

    /// Creates a new ordinary object, with its prototype set to null.
    ///
    /// This is equivalent to calling the specification's abstract operation
    /// [`OrdinaryObjectCreate(null)`][call].
    ///
    /// [call]: https://tc39.es/ecma262/#sec-ordinaryobjectcreate
    #[inline]
    #[must_use]
    pub fn with_null_proto() -> Self {
        Self::from_proto_and_data(None, OrdinaryObject)
    }

    /// Creates a new object with the provided prototype and object data.
    ///
    /// This is equivalent to calling the specification's abstract operation [`OrdinaryObjectCreate`],
    /// with the difference that the `additionalInternalSlotsList` parameter is determined by
    /// the provided `data`.
    ///
    /// [`OrdinaryObjectCreate`]: https://tc39.es/ecma262/#sec-ordinaryobjectcreate
    pub fn from_proto_and_data<O: Into<Option<Self>>, T: NativeObject>(
        prototype: O,
        data: T,
    ) -> Self {
        let internal_methods = data.internal_methods();
        let gc = Gc::new(VTableObject {
            object: GcRefCell::new(Object {
                data,
                properties: PropertyMap::from_prototype_unique_shape(prototype.into()),
                extensible: true,
                private_elements: ThinVec::new(),
            }),
            vtable: internal_methods,
        });

        Self {
            inner: coerce_gc(gc),
        }
    }

    /// Creates a new object with the provided prototype and object data.
    ///
    /// This is equivalent to calling the specification's abstract operation [`OrdinaryObjectCreate`],
    /// with the difference that the `additionalInternalSlotsList` parameter is determined by
    /// the provided `data`.
    ///
    /// [`OrdinaryObjectCreate`]: https://tc39.es/ecma262/#sec-ordinaryobjectcreate
    pub(crate) fn from_proto_and_data_with_shared_shape<O: Into<Option<Self>>, T: NativeObject>(
        root_shape: &RootShape,
        prototype: O,
        data: T,
    ) -> Self {
        let internal_methods = data.internal_methods();
        let gc = Gc::new(VTableObject {
            object: GcRefCell::new(Object {
                data,
                properties: PropertyMap::from_prototype_with_shared_shape(
                    root_shape,
                    prototype.into(),
                ),
                extensible: true,
                private_elements: ThinVec::new(),
            }),
            vtable: internal_methods,
        });

        Self {
            inner: coerce_gc(gc),
        }
    }

    /// Downcasts the object's inner data if the object is of type `T`.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    pub fn downcast<T: NativeObject>(self) -> Result<JsObject<T>, Self> {
        if self.borrow().is::<T>() {
            let ptr: NonNull<GcBox<VTableObject<dyn NativeObject>>> = Gc::into_raw(self.inner);

            // SAFETY: the rooted `Gc` ensures we can read the inner `GcBox` in a sound way.
            #[cfg(debug_assertions)]
            unsafe {
                let erased = ptr.as_ref();

                // Some sanity checks to ensure we're doing the correct cast.
                assert_eq!(
                    std::mem::size_of_val(erased),
                    std::mem::size_of::<GcBox<VTableObject<T>>>()
                );
                assert_eq!(
                    std::mem::align_of_val(erased),
                    std::mem::align_of::<GcBox<VTableObject<T>>>()
                );
            }

            let ptr: NonNull<GcBox<VTableObject<T>>> = ptr.cast();

            // SAFETY: The conversion between an `Any` and its downcasted type must be valid.
            // The pointer returned by `Gc::into_raw` is the same one that is passed to `Gc::from_raw`,
            // just downcasted to the type `T`.
            let inner = unsafe { Gc::from_raw(ptr) };

            Ok(JsObject { inner })
        } else {
            Err(self)
        }
    }

    /// Downcasts the object's inner data to `T` without verifying the inner type of `T`.
    ///
    /// # Safety
    ///
    /// For this cast to be sound, `self` must contain an instance of `T` inside its inner data.
    #[must_use]
    pub unsafe fn downcast_unchecked<T: NativeObject>(self) -> JsObject<T> {
        let ptr: NonNull<GcBox<VTableObject<T>>> = Gc::into_raw(self.inner).cast();

        // SAFETY: The caller guarantees `T` is the original inner data type of the underlying
        // object.
        unsafe {
            JsObject {
                inner: Gc::from_raw(ptr),
            }
        }
    }

    /// Downcasts a reference to the object,
    /// if the object is of type `T`.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    #[must_use]
    #[track_caller]
    pub fn downcast_ref<T: NativeObject>(&self) -> Option<Ref<'_, T>> {
        Ref::try_map(self.borrow(), ErasedObject::downcast_ref)
    }

    /// Downcasts a mutable reference to the object,
    /// if the object is type native object type `T`.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently borrowed.
    #[must_use]
    #[track_caller]
    pub fn downcast_mut<T: NativeObject>(&self) -> Option<RefMut<'_, ErasedObject, T>> {
        RefMut::try_map(self.borrow_mut(), ErasedObject::downcast_mut)
    }

    /// Checks if this object is an instance of a certain `NativeObject`.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    #[inline]
    #[must_use]
    #[track_caller]
    pub fn is<T: NativeObject>(&self) -> bool {
        self.borrow().is::<T>()
    }

    /// Checks if it's an ordinary object.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    #[inline]
    #[must_use]
    #[track_caller]
    pub fn is_ordinary(&self) -> bool {
        self.is::<OrdinaryObject>()
    }

    /// Checks if it's an `Array` object.
    #[inline]
    #[must_use]
    #[track_caller]
    pub fn is_array(&self) -> bool {
        std::ptr::eq(self.vtable(), &ARRAY_EXOTIC_INTERNAL_METHODS)
    }

    /// Converts an object to a primitive.
    ///
    /// Diverges from the spec to prevent a stack overflow when the object is recursive.
    /// For example,
    /// ```javascript
    /// let a = [1];
    /// a[1] = a;
    /// console.log(a.toString()); // We print "1,"
    /// ```
    /// The spec doesn't mention what to do in this situation, but a naive implementation
    /// would overflow the stack recursively calling `toString()`. We follow v8 and SpiderMonkey
    /// instead by returning a default value for the given `hint` -- either `0.` or `""`.
    /// Example in v8: <https://repl.it/repls/IvoryCircularCertification#index.js>
    ///
    /// More information:
    ///  - [ECMAScript][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-ordinarytoprimitive
    pub(crate) fn ordinary_to_primitive(
        &self,
        context: &mut Context,
        hint: PreferredType,
    ) -> JsResult<JsValue> {
        // 1. Assert: Type(O) is Object.
        //      Already is JsObject by type.
        // 2. Assert: Type(hint) is String and its value is either "string" or "number".
        debug_assert!(hint == PreferredType::String || hint == PreferredType::Number);

        // Diverge from the spec here to make sure we aren't going to overflow the stack by converting
        // a recursive structure
        // We can follow v8 & SpiderMonkey's lead and return a default value for the hint in this situation
        // (see https://repl.it/repls/IvoryCircularCertification#index.js)
        let recursion_limiter = RecursionLimiter::new(self.as_ref());
        if recursion_limiter.live {
            // we're in a recursive object, bail
            return Ok(match hint {
                PreferredType::Number => JsValue::new(0),
                PreferredType::String => JsValue::new(js_string!()),
                PreferredType::Default => unreachable!("checked type hint in step 2"),
            });
        }

        // 3. If hint is "string", then
        //    a. Let methodNames be « "toString", "valueOf" ».
        // 4. Else,
        //    a. Let methodNames be « "valueOf", "toString" ».
        let method_names = if hint == PreferredType::String {
            [utf16!("toString"), utf16!("valueOf")]
        } else {
            [utf16!("valueOf"), utf16!("toString")]
        };

        // 5. For each name in methodNames in List order, do
        for name in method_names {
            // a. Let method be ? Get(O, name).
            let method = self.get(name, context)?;

            // b. If IsCallable(method) is true, then
            if let Some(method) = method.as_callable() {
                // i. Let result be ? Call(method, O).
                let result = method.call(&self.clone().into(), &[], context)?;

                // ii. If Type(result) is not Object, return result.
                if !result.is_object() {
                    return Ok(result);
                }
            }
        }

        // 6. Throw a TypeError exception.
        Err(JsNativeError::typ()
            .with_message("cannot convert object to primitive value")
            .into())
    }

    /// The abstract operation `ToPropertyDescriptor`.
    ///
    /// More information:
    /// - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-topropertydescriptor
    pub fn to_property_descriptor(&self, context: &mut Context) -> JsResult<PropertyDescriptor> {
        // 1 is implemented on the method `to_property_descriptor` of value

        // 2. Let desc be a new Property Descriptor that initially has no fields.
        let mut desc = PropertyDescriptor::builder();

        // 3. Let hasEnumerable be ? HasProperty(Obj, "enumerable").
        // 4. If hasEnumerable is true, then ...
        if self.has_property(utf16!("enumerable"), context)? {
            // a. Let enumerable be ! ToBoolean(? Get(Obj, "enumerable")).
            // b. Set desc.[[Enumerable]] to enumerable.
            desc = desc.enumerable(self.get(utf16!("enumerable"), context)?.to_boolean());
        }

        // 5. Let hasConfigurable be ? HasProperty(Obj, "configurable").
        // 6. If hasConfigurable is true, then ...
        if self.has_property(utf16!("configurable"), context)? {
            // a. Let configurable be ! ToBoolean(? Get(Obj, "configurable")).
            // b. Set desc.[[Configurable]] to configurable.
            desc = desc.configurable(self.get(utf16!("configurable"), context)?.to_boolean());
        }

        // 7. Let hasValue be ? HasProperty(Obj, "value").
        // 8. If hasValue is true, then ...
        if self.has_property(utf16!("value"), context)? {
            // a. Let value be ? Get(Obj, "value").
            // b. Set desc.[[Value]] to value.
            desc = desc.value(self.get(utf16!("value"), context)?);
        }

        // 9. Let hasWritable be ? HasProperty(Obj, ).
        // 10. If hasWritable is true, then ...
        if self.has_property(utf16!("writable"), context)? {
            // a. Let writable be ! ToBoolean(? Get(Obj, "writable")).
            // b. Set desc.[[Writable]] to writable.
            desc = desc.writable(self.get(utf16!("writable"), context)?.to_boolean());
        }

        // 11. Let hasGet be ? HasProperty(Obj, "get").
        // 12. If hasGet is true, then
        let get = if self.has_property(utf16!("get"), context)? {
            // a. Let getter be ? Get(Obj, "get").
            let getter = self.get(utf16!("get"), context)?;
            // b. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
            // todo: extract IsCallable to be callable from Value
            if !getter.is_undefined() && getter.as_object().map_or(true, |o| !o.is_callable()) {
                return Err(JsNativeError::typ()
                    .with_message("Property descriptor getter must be callable")
                    .into());
            }
            // c. Set desc.[[Get]] to getter.
            Some(getter)
        } else {
            None
        };

        // 13. Let hasSet be ? HasProperty(Obj, "set").
        // 14. If hasSet is true, then
        let set = if self.has_property(utf16!("set"), context)? {
            // 14.a. Let setter be ? Get(Obj, "set").
            let setter = self.get(utf16!("set"), context)?;
            // 14.b. If IsCallable(setter) is false and setter is not undefined, throw a TypeError exception.
            // todo: extract IsCallable to be callable from Value
            if !setter.is_undefined() && setter.as_object().map_or(true, |o| !o.is_callable()) {
                return Err(JsNativeError::typ()
                    .with_message("Property descriptor setter must be callable")
                    .into());
            }
            // 14.c. Set desc.[[Set]] to setter.
            Some(setter)
        } else {
            None
        };

        // 15. If desc.[[Get]] is present or desc.[[Set]] is present, then ...
        // a. If desc.[[Value]] is present or desc.[[Writable]] is present, throw a TypeError exception.
        if get.as_ref().or(set.as_ref()).is_some() && desc.inner().is_data_descriptor() {
            return Err(JsNativeError::typ()
                .with_message(
                    "Invalid property descriptor.\
Cannot both specify accessors and a value or writable attribute",
                )
                .into());
        }

        desc = desc.maybe_get(get).maybe_set(set);

        // 16. Return desc.
        Ok(desc.build())
    }

    /// `7.3.25 CopyDataProperties ( target, source, excludedItems )`
    ///
    /// More information:
    ///  - [ECMAScript][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-copydataproperties
    pub fn copy_data_properties<K>(
        &self,
        source: &JsValue,
        excluded_keys: Vec<K>,
        context: &mut Context,
    ) -> JsResult<()>
    where
        K: Into<PropertyKey>,
    {
        let context = &mut InternalMethodContext::new(context);

        // 1. Assert: Type(target) is Object.
        // 2. Assert: excludedItems is a List of property keys.
        // 3. If source is undefined or null, return target.
        if source.is_null_or_undefined() {
            return Ok(());
        }

        // 4. Let from be ! ToObject(source).
        let from = source
            .to_object(context)
            .expect("function ToObject should never complete abruptly here");

        // 5. Let keys be ? from.[[OwnPropertyKeys]]().
        // 6. For each element nextKey of keys, do
        let excluded_keys: Vec<PropertyKey> = excluded_keys.into_iter().map(Into::into).collect();
        for key in from.__own_property_keys__(context)? {
            // a. Let excluded be false.
            let mut excluded = false;

            // b. For each element e of excludedItems, do
            for e in &excluded_keys {
                // i. If SameValue(e, nextKey) is true, then
                if *e == key {
                    // 1. Set excluded to true.
                    excluded = true;
                    break;
                }
            }
            // c. If excluded is false, then
            if !excluded {
                // i. Let desc be ? from.[[GetOwnProperty]](nextKey).
                let desc = from.__get_own_property__(&key, context)?;

                // ii. If desc is not undefined and desc.[[Enumerable]] is true, then
                if let Some(desc) = desc {
                    if let Some(enumerable) = desc.enumerable() {
                        if enumerable {
                            // 1. Let propValue be ? Get(from, nextKey).
                            let prop_value = from.__get__(&key, from.clone().into(), context)?;

                            // 2. Perform ! CreateDataPropertyOrThrow(target, nextKey, propValue).
                            self.create_data_property_or_throw(key, prop_value, context)
                                .expect(
                                    "CreateDataPropertyOrThrow should never complete abruptly here",
                                );
                        }
                    }
                }
            }
        }

        // 7. Return target.
        Ok(())
    }

    pub(crate) fn get_property(&self, key: &PropertyKey) -> Option<PropertyDescriptor> {
        let mut obj = Some(self.clone());

        while let Some(o) = obj {
            if let Some(v) = o.borrow().properties.get(key) {
                return Some(v);
            }
            obj = o.borrow().prototype().clone();
        }
        None
    }

    /// Casts to a `BufferObject` if the object is an `ArrayBuffer` or a `SharedArrayBuffer`.
    #[inline]
    pub(crate) fn into_buffer_object(self) -> Result<BufferObject, JsObject> {
        let obj = self.borrow();

        if obj.is::<ArrayBuffer>() {
            drop(obj);
            // SAFETY: We have verified that the inner data of `self` is of type `ArrayBuffer`.
            return Ok(BufferObject::Buffer(unsafe {
                self.downcast_unchecked::<ArrayBuffer>()
            }));
        }
        if obj.is::<SharedArrayBuffer>() {
            drop(obj);
            // SAFETY: We have verified that the inner data of `self` is of type `SharedArrayBuffer`.
            return Ok(BufferObject::SharedBuffer(unsafe {
                self.downcast_unchecked::<SharedArrayBuffer>()
            }));
        }
        drop(obj);

        Err(self)
    }
}

impl<T: NativeObject + ?Sized> JsObject<T> {
    /// Creates a new `JsObject` from its root shape, prototype, and data.
    ///
    /// Note that the returned object will not be erased to be convertible to a
    /// `JsValue`. To erase the pointer, call [`JsObject::upcast`].
    pub fn new<O: Into<Option<JsObject>>>(root_shape: &RootShape, prototype: O, data: T) -> Self
    where
        T: Sized,
    {
        let internal_methods = data.internal_methods();
        let inner = Gc::new(VTableObject {
            object: GcRefCell::new(Object {
                data,
                properties: PropertyMap::from_prototype_with_shared_shape(
                    root_shape,
                    prototype.into(),
                ),
                extensible: true,
                private_elements: ThinVec::new(),
            }),
            vtable: internal_methods,
        });

        Self { inner }
    }

    /// Creates a new `JsObject` from prototype, and data.
    ///
    /// Note that the returned object will not be erased to be convertible to a
    /// `JsValue`. To erase the pointer, call [`JsObject::upcast`].
    pub fn new_unique<O: Into<Option<JsObject>>>(prototype: O, data: T) -> Self
    where
        T: Sized,
    {
        let internal_methods = data.internal_methods();
        let inner = Gc::new(VTableObject {
            object: GcRefCell::new(Object {
                data,
                properties: PropertyMap::from_prototype_unique_shape(prototype.into()),
                extensible: true,
                private_elements: ThinVec::new(),
            }),
            vtable: internal_methods,
        });

        Self { inner }
    }

    /// Upcasts this object's inner data from a specific type `T` to an erased type
    /// `dyn NativeObject`.
    #[must_use]
    pub fn upcast(self) -> JsObject
    where
        T: Sized,
    {
        JsObject {
            inner: coerce_gc(self.inner),
        }
    }

    /// Immutably borrows the `Object`.
    ///
    /// The borrow lasts until the returned `Ref` exits scope.
    /// Multiple immutable borrows can be taken out at the same time.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    #[inline]
    #[must_use]
    #[track_caller]
    pub fn borrow(&self) -> Ref<'_, Object<T>> {
        self.try_borrow().expect("Object already mutably borrowed")
    }

    /// Mutably borrows the Object.
    ///
    /// The borrow lasts until the returned `RefMut` exits scope.
    /// The object cannot be borrowed while this borrow is active.
    ///
    /// # Panics
    /// Panics if the object is currently borrowed.
    #[inline]
    #[must_use]
    #[track_caller]
    pub fn borrow_mut(&self) -> RefMut<'_, Object<T>, Object<T>> {
        self.try_borrow_mut().expect("Object already borrowed")
    }

    /// Immutably borrows the `Object`, returning an error if the value is currently mutably borrowed.
    ///
    /// The borrow lasts until the returned `GcCellRef` exits scope.
    /// Multiple immutable borrows can be taken out at the same time.
    ///
    /// This is the non-panicking variant of [`borrow`](#method.borrow).
    #[inline]
    pub fn try_borrow(&self) -> StdResult<Ref<'_, Object<T>>, BorrowError> {
        self.inner.object.try_borrow().map_err(|_| BorrowError)
    }

    /// Mutably borrows the object, returning an error if the value is currently borrowed.
    ///
    /// The borrow lasts until the returned `GcCellRefMut` exits scope.
    /// The object be borrowed while this borrow is active.
    ///
    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
    #[inline]
    pub fn try_borrow_mut(&self) -> StdResult<RefMut<'_, Object<T>, Object<T>>, BorrowMutError> {
        self.inner
            .object
            .try_borrow_mut()
            .map_err(|_| BorrowMutError)
    }

    /// Checks if the garbage collected memory is the same.
    #[must_use]
    #[inline]
    pub fn equals(lhs: &Self, rhs: &Self) -> bool {
        Gc::ptr_eq(lhs.inner(), rhs.inner())
    }

    /// Get the prototype of the object.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    #[inline]
    #[must_use]
    #[track_caller]
    pub fn prototype(&self) -> JsPrototype {
        self.borrow().prototype()
    }

    /// Get the extensibility of the object.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed.
    pub(crate) fn extensible(&self) -> bool {
        self.borrow().extensible
    }

    /// Set the prototype of the object.
    ///
    /// # Panics
    ///
    /// Panics if the object is currently mutably borrowed
    #[inline]
    #[track_caller]
    #[allow(clippy::must_use_candidate)]
    pub fn set_prototype(&self, prototype: JsPrototype) -> bool {
        self.borrow_mut().set_prototype(prototype)
    }

    /// Helper function for property insertion.
    #[track_caller]
    pub(crate) fn insert<K, P>(&self, key: K, property: P) -> bool
    where
        K: Into<PropertyKey>,
        P: Into<PropertyDescriptor>,
    {
        self.borrow_mut().insert(key, property)
    }

    /// Inserts a field in the object `properties` without checking if it's writable.
    ///
    /// If a field was already in the object with the same name, than `true` is returned
    /// with that field, otherwise `false` is returned.
    pub fn insert_property<K, P>(&self, key: K, property: P) -> bool
    where
        K: Into<PropertyKey>,
        P: Into<PropertyDescriptor>,
    {
        self.insert(key.into(), property)
    }

    /// It determines if Object is a callable function with a `[[Call]]` internal method.
    ///
    /// More information:
    /// - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-iscallable
    #[inline]
    #[must_use]
    pub fn is_callable(&self) -> bool {
        self.inner.vtable.__call__ != ORDINARY_INTERNAL_METHODS.__call__
    }

    /// It determines if Object is a function object with a `[[Construct]]` internal method.
    ///
    /// More information:
    /// - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-isconstructor
    #[inline]
    #[must_use]
    pub fn is_constructor(&self) -> bool {
        self.inner.vtable.__construct__ != ORDINARY_INTERNAL_METHODS.__construct__
    }

    pub(crate) fn vtable(&self) -> &'static InternalObjectMethods {
        self.inner.vtable
    }

    pub(crate) const fn inner(&self) -> &Gc<VTableObject<T>> {
        &self.inner
    }

    /// Create a new private name with this object as the unique identifier.
    pub(crate) fn private_name(&self, description: JsString) -> PrivateName {
        let ptr: *const _ = self.as_ref();
        PrivateName::new(description, ptr.cast::<()>() as usize)
    }
}

impl<T: NativeObject + ?Sized> AsRef<GcRefCell<Object<T>>> for JsObject<T> {
    #[inline]
    fn as_ref(&self) -> &GcRefCell<Object<T>> {
        &self.inner.object
    }
}

impl<T: NativeObject + ?Sized> From<Gc<VTableObject<T>>> for JsObject<T> {
    #[inline]
    fn from(inner: Gc<VTableObject<T>>) -> Self {
        Self { inner }
    }
}

impl<T: NativeObject + ?Sized> PartialEq for JsObject<T> {
    fn eq(&self, other: &Self) -> bool {
        Self::equals(self, other)
    }
}

impl<T: NativeObject + ?Sized> Eq for JsObject<T> {}

impl<T: NativeObject + ?Sized> Hash for JsObject<T> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        std::ptr::hash(self.as_ref(), state);
    }
}

/// An error returned by [`JsObject::try_borrow`](struct.JsObject.html#method.try_borrow).
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct BorrowError;

impl Display for BorrowError {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt("Object already mutably borrowed", f)
    }
}

impl Error for BorrowError {}

/// An error returned by [`JsObject::try_borrow_mut`](struct.JsObject.html#method.try_borrow_mut).
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct BorrowMutError;

impl Display for BorrowMutError {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt("Object already borrowed", f)
    }
}

impl Error for BorrowMutError {}

#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum RecursionValueState {
    /// This value is "live": there's an active RecursionLimiter that hasn't been dropped.
    Live,
    /// This value has been seen before, but the recursion limiter has been dropped.
    /// For example:
    /// ```javascript
    /// let b = [];
    /// JSON.stringify([ // Create a recursion limiter for the root here
    ///    b,            // state for b's &JsObject here is None
    ///    b,            // state for b's &JsObject here is Visited
    /// ]);
    /// ```
    Visited,
}

/// Prevents infinite recursion during `Debug::fmt`, `JSON.stringify`, and other conversions.
/// This uses a thread local, so is not safe to use where the object graph will be traversed by
/// multiple threads!
#[derive(Debug)]
pub struct RecursionLimiter {
    /// If this was the first `JsObject` in the tree.
    top_level: bool,
    /// The ptr being kept in the HashSet, so we can delete it when we drop.
    ptr: usize,
    /// If this JsObject has been visited before in the graph, but not in the current branch.
    pub visited: bool,
    /// If this JsObject has been visited in the current branch of the graph.
    pub live: bool,
}

impl Drop for RecursionLimiter {
    fn drop(&mut self) {
        if self.top_level {
            // When the top level of the graph is dropped, we can free the entire map for the next traversal.
            SEEN.with(|hm| hm.borrow_mut().clear());
        } else if !self.live {
            // This was the first RL for this object to become live, so it's no longer live now that it's dropped.
            SEEN.with(|hm| {
                hm.borrow_mut()
                    .insert(self.ptr, RecursionValueState::Visited)
            });
        }
    }
}

thread_local! {
    /// The map of pointers to `JsObject` that have been visited during the current `Debug::fmt` graph,
    /// and the current state of their RecursionLimiter (dropped or live -- see `RecursionValueState`)
    static SEEN: RefCell<HashMap<usize, RecursionValueState>> = RefCell::new(HashMap::new());
}

impl RecursionLimiter {
    /// Determines if the specified `T` has been visited, and returns a struct that will free it when dropped.
    ///
    /// This is done by maintaining a thread-local hashset containing the pointers of `T` values that have been
    /// visited. The first `T` visited will clear the hashset, while any others will check if they are contained
    /// by the hashset.
    pub fn new<T: ?Sized>(o: &T) -> Self {
        let ptr: *const _ = o;
        let ptr = ptr.cast::<()>() as usize;
        let (top_level, visited, live) = SEEN.with(|hm| {
            let mut hm = hm.borrow_mut();
            let top_level = hm.is_empty();
            let old_state = hm.insert(ptr, RecursionValueState::Live);

            (
                top_level,
                old_state == Some(RecursionValueState::Visited),
                old_state == Some(RecursionValueState::Live),
            )
        });

        Self {
            top_level,
            ptr,
            visited,
            live,
        }
    }
}

impl<T: NativeObject + ?Sized> Debug for JsObject<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
        let limiter = RecursionLimiter::new(self.as_ref());

        // Typically, using `!limiter.live` would be good enough here.
        // However, the JS object hierarchy involves quite a bit of repitition, and the sheer amount of data makes
        // understanding the Debug output impossible; limiting the usefulness of it.
        //
        // Instead, we check if the object has appeared before in the entire graph. This means that objects will appear
        // at most once, hopefully making things a bit clearer.
        if !limiter.visited && !limiter.live {
            let ptr: *const _ = self.as_ref();
            let ptr = ptr.cast::<()>();
            let obj = self.borrow();
            let kind = obj.data.type_name_of_value();
            if self.is_callable() {
                let name_prop = obj
                    .properties()
                    .get(&PropertyKey::String(JsString::from("name")));
                let name = match name_prop {
                    None => JsString::default(),
                    Some(prop) => prop
                        .value()
                        .and_then(JsValue::as_string)
                        .cloned()
                        .unwrap_or_default(),
                };

                return f.write_fmt(format_args!("({:?}) {:?} 0x{:X}", kind, name, ptr as usize));
            }

            f.write_fmt(format_args!("({:?}) 0x{:X}", kind, ptr as usize))
        } else {
            f.write_str("{ ... }")
        }
    }
}

/// Upcasts the reference to an object from a specific type `T` to an erased type `dyn NativeObject`.
fn coerce_gc<T: NativeObject>(ptr: Gc<VTableObject<T>>) -> Gc<VTableObject<dyn NativeObject>> {
    // SAFETY: This just makes the casting from sized to unsized. Should eventually be replaced by
    // https://github.com/rust-lang/rust/issues/18598
    unsafe {
        let ptr = Gc::into_raw(ptr);
        let ptr: NonNull<GcBox<VTableObject<dyn NativeObject>>> = ptr;
        Gc::from_raw(ptr)
    }
}