1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
use crate::error::{RequestError, RespondError, SendError};

use tokio::sync::mpsc;
use tokio::sync::oneshot;

/// The internal data sent in the MPSC request channel, a tuple that contains the request and the oneshot response channel responder
pub type Payload<Req, Res> = (Req, Responder<Res>);

/// Send values to the associated [`RequestReceiver`].
#[derive(Debug)]
pub struct RequestSender<Req, Res> {
    request_sender: mpsc::Sender<Payload<Req, Res>>,
}

/// Receive requests values from the associated [`RequestSender`]
///
/// Instances are created by the [`channel`] function.
#[derive(Debug)]
pub struct RequestReceiver<Req, Res> {
    request_receiver: mpsc::Receiver<Payload<Req, Res>>,
}

/// Send values back to the [`RequestSender`] or [`RequestReceiver`]
///
/// Instances are created by calling [`RequestSender::send_receive()`] or [`RequestSender::send()`]
#[derive(Debug)]
pub struct Responder<Res> {
    response_sender: Option<oneshot::Sender<Res>>,
}

/// Receive responses from a [`Responder`]
///
/// Instances are created by calling [`RequestSender::send_receive()`] or [`RequestSender::send()`]
#[derive(Debug)]
pub struct ResponseReceiver<Res> {
    response_receiver: Option<oneshot::Receiver<Res>>,
}

impl<Req, Res> RequestSender<Req, Res> {
    fn new(request_sender: mpsc::Sender<Payload<Req, Res>>) -> Self {
        RequestSender { request_sender }
    }

    /// Send a request over the MPSC channel, open the response channel
    /// Return the [`ResponseReceiver`] which can be used to wait for a response
    ///
    /// This call blocks if the request channel is full. It does not wait for a response
    pub async fn send(&self, request: Req) -> Result<ResponseReceiver<Res>, SendError<Req>> {
        let (response_sender, response_receiver) = oneshot::channel::<Res>();
        let responder = Responder::new(response_sender);
        let payload = (request, responder);
        self.request_sender
            .send(payload)
            .await
            .map_err(|payload| SendError(payload.0 .0))?;
        let receiver = ResponseReceiver::new(response_receiver);
        Ok(receiver)
    }

    /// Send a request over the MPSC channel, wait for the response and return it
    ///
    /// This call blocks if the request channel is full, and while waiting for the response
    pub async fn send_receive(&self, request: Req) -> Result<Res, RequestError<Req>> {
        let mut receiver = self.send(request).await?;
        receiver
            .recv()
            .await
            .map_err(|_err| RequestError::RecvError)
    }

    /// Checks if the channel has been closed.
    pub fn is_closed(&self) -> bool {
        self.request_sender.is_closed()
    }
}

impl<Req, Res> RequestReceiver<Req, Res> {
    fn new(receiver: mpsc::Receiver<Payload<Req, Res>>) -> Self {
        RequestReceiver {
            request_receiver: receiver,
        }
    }

    /// Receives the next value for this receiver.
    pub async fn recv(&mut self) -> Result<Payload<Req, Res>, RequestError<Req>> {
        match self.request_receiver.recv().await {
            Some(payload) => Ok(payload),
            None => Err(RequestError::RecvError),
        }
    }
}

impl<Res> ResponseReceiver<Res> {
    fn new(response_receiver: oneshot::Receiver<Res>) -> Self {
        Self {
            response_receiver: Some(response_receiver),
        }
    }

    /// Receives the next value for this receiver.
    pub async fn recv(&mut self) -> Result<Res, RequestError<()>> {
        match self.response_receiver.take() {
            Some(response_receiver) => Ok(response_receiver.await?),
            None => Err(RequestError::RecvError),
        }
    }
}

impl<Res> Responder<Res> {
    fn new(response_sender: oneshot::Sender<Res>) -> Self {
        Self {
            response_sender: Some(response_sender),
        }
    }

    /// Responds a request from the [`RequestSender`] which finishes the request
    pub fn respond(&mut self, response: Res) -> Result<(), RespondError<Res>> {
        match self.response_sender.take() {
            Some(response_sender) => response_sender
                .send(response)
                .map_err(|res| RespondError::ChannelClosed(res)),
            None => Err(RespondError::AlreadyReplied(response)),
        }
    }
}

/// Creates a bounded mpsc request-response  channel for communicating between
/// asynchronous tasks with backpressure
///
/// # Panics
///
/// Panics if the buffer capacity is 0, just like the Tokio MPSC channel
///
/// # Examples
///
/// ```rust
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx) = bmrng::channel::<i32, i32>(100);
///     tokio::spawn(async move {
///         match rx.recv().await {
///             Ok((input, mut responder)) => {
///                 let res = responder.respond(input * input);
///                 assert_eq!(res.is_ok(), true);
///             }
///             Err(err) => {
///                 panic!(err);
///             }
///         }
///     });
///     let response = tx.send_receive(8).await;
///     assert_eq!(response.unwrap(), 64);
/// }
/// ```
pub fn channel<Req, Res>(buffer: usize) -> (RequestSender<Req, Res>, RequestReceiver<Req, Res>) {
    let (sender, receiver) = mpsc::channel::<Payload<Req, Res>>(buffer);
    let request_sender = RequestSender::new(sender);
    let request_receiver = RequestReceiver::new(receiver);
    (request_sender, request_receiver)
}