1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
extern crate i2cdev;
extern crate byteorder;
extern crate core;

use i2cdev::linux::{LinuxI2CDevice, LinuxI2CError};
use i2cdev::core::I2CDevice;
use byteorder::{LittleEndian, BigEndian, WriteBytesExt, ReadBytesExt};
use std::io::Cursor;

const DEFAULT_I2C_ADDRESS: u16 = 0x77;
const DEFAULT_I2C_PATH: &'static str = "/dev/i2c-1";

/// Wrapper type for results
pub type Result<T> = std::result::Result<T, Error>;

///
type Endiness = BigEndian;

/// Errors that all functions could return. Errors will either be from the i2cdev library or the
/// byteorder library.
#[derive(Debug)]
pub enum Error {
    I2cError(LinuxI2CError),
    IoError(std::io::Error),
    Other(()),
}

impl From<LinuxI2CError> for Error {
    fn from(f: LinuxI2CError) -> Self {
        Error::I2cError(f)
    }
}

impl From<std::io::Error> for Error {
    fn from(f: std::io::Error) -> Self {
        Error::IoError(f)
    }
}

impl From<()> for Error {
    fn from(f: ()) -> Self {
        Error::Other(f)
    }
}

/// All of the registers for the BMP280
enum Register {
    DigT1,
    DigT2,
    DigT3,

    DigP1,
    DigP2,
    DigP3,
    DigP4,
    DigP5,
    DigP6,
    DigP7,
    DigP8,
    DigP9,

    ChipId,
    Version,
    SoftReset,

    /// R calibration stored in 0xE1-0xF0
    Cal26,

    Control,
    Config,
    PressureData,
    TemperatureData,
}

impl<'a> std::convert::From<&'a Register> for u8 {
    fn from(frm: &'a Register) -> u8 {
        use Register::*;
        match *frm {
            DigT1 => 0x88,
            DigT2 => 0x8A,
            DigT3 => 0x8C,

            DigP1 => 0x8E,
            DigP2 => 0x90,
            DigP3 => 0x92,
            DigP4 => 0x94,
            DigP5 => 0x96,
            DigP6 => 0x98,
            DigP7 => 0x9A,
            DigP8 => 0x9C,
            DigP9 => 0x9E,

            ChipId => 0xD0,
            Version => 0xD1,
            SoftReset => 0xE0,

            Cal26 => 0xE1,

            Control => 0xF4,
            Config => 0xF5,
            PressureData => 0xF7,
            TemperatureData => 0xFA,
        }
    }
}

/// Calibration data for the BMP280. There is no need to create this struct manually, it will
/// automatically be created.
struct Calibration {
    dig_t1: u16,
    dig_t2: i16,
    dig_t3: i16,

    dig_p1: u16,
    dig_p2: i16,
    dig_p3: i16,
    dig_p4: i16,
    dig_p5: i16,
    dig_p6: i16,
    dig_p7: i16,
    dig_p8: i16,
    dig_p9: i16,

    dig_h1: u8,
    dig_h2: i16,
    dig_h3: u8,
    dig_h4: i16,
    dig_h5: i16,
    dig_h6: i8,
}

impl core::default::Default for Calibration {
    fn default() -> Self {
        unsafe { core::mem::zeroed() }
    }
}

/// A single BMP280 sensor
pub struct Bmp280 {
    sensor_id: i32,
    fine: i32,
    calibration: Calibration,
    i2c_device: LinuxI2CDevice,
    ground_pressure: f32,
}

/// A builder for Bmp280 sensors.
///
/// ```ignore
/// let mut sensor = Bmp280Builder::new()
///     .address(0x20)
///     .path("/dev/i2c-1".to_string())
///     .build().ok("Failed to build device");
///
/// let altitude = sensor.read_altitude();
///
/// // Minimal example
/// let mut sensor = Bmp280Builder::new().build().ok("Failed to build device");
/// let altitude = sensor.read_altitude();
/// ```
pub struct Bmp280Builder {
    i2c_address: u16,
    i2c_path: String,
    ground_pressure: f32,
}

impl Bmp280Builder {
    pub fn new() -> Self {
        Bmp280Builder {
            i2c_address: DEFAULT_I2C_ADDRESS,
            i2c_path: DEFAULT_I2C_PATH.to_string(),
            ground_pressure: 0.,
        }
    }

    /// Set the address of the I2C device for the sensor. There is a default value for this, so you
    /// do not need to specify it explicitly.
    pub fn address(&mut self, address: u16) -> &mut Self {
        self.i2c_address = address;
        self
    }

    /// Set the path of the I2C device for the sensor.  There is a default value for this, so you
    /// do not need to specify it explicitly.
    pub fn path(&mut self, path: String) -> &mut Self {
        self.i2c_path = path;
        self
    }

    /// Set the ground pressure for the sensor. If you do not specify this, the altitude will be
    /// zeroed when you call .build().
    pub fn ground_pressure(&mut self, pressure: f32) -> &mut Self {
        self.ground_pressure = pressure;
        self
    }

    /// Attempt to build a Bmp280 sensor from this builder.
    pub fn build(&self) -> Result<Bmp280> {
        let dev = try!(LinuxI2CDevice::new(&self.i2c_path, self.i2c_address));

        let mut sensor = Bmp280 {
            i2c_device: dev,
            sensor_id: 0,
            calibration: Calibration::default(),
            fine: 0,
            ground_pressure: self.ground_pressure,
        };

        try!(sensor.begin());

        if self.ground_pressure != 0. {
            try!(sensor.zero());
        }

        Ok(sensor)
    }
}

impl Bmp280 {
    fn write8(&mut self, reg: &Register, value: u8) -> Result<()> {
        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.write(&[value]));
        Ok(())
    }

    /// Will set the relative pressure for ground level readings for .read_altitude().
    pub fn zero(&mut self) -> Result<()> {
        self.ground_pressure = try!(self.read_pressure());

        Ok(())
    }

    fn read8(&mut self, reg: &Register) -> Result<u8> {
        let mut buf = [0u8; 1];

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.read(&mut buf));

        let mut curs = Cursor::new(buf);

        let val = try!(curs.read_u8());

        Ok(val)
    }

    fn write16(&mut self, reg: &Register, value: u16) -> Result<()> {
        let mut buf = vec![0u8, 0u8];
        try!(buf.write_u16::<Endiness>(value));

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.write(&buf));

        Ok(())
    }

    fn read16(&mut self, reg: &Register) -> Result<u16> {
        let mut buf = [0u8; 2];

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.read(&mut buf));

        let mut curs = Cursor::new(buf);

        let val = try!(curs.read_u16::<Endiness>());

        Ok(val)
    }

    fn read16s(&mut self, reg: &Register) -> Result<i16> {
        let mut buf = [0u8; 2];

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.read(&mut buf));

        let mut curs = Cursor::new(buf);

        let val = try!(curs.read_i16::<Endiness>());

        Ok(val)
    }

    fn read16le(&mut self, reg: &Register) -> Result<u16> {
        let mut buf = [0u8; 2];

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.read(&mut buf));

        let mut curs = Cursor::new(buf);

        let val = try!(curs.read_u16::<LittleEndian>());

        Ok(val)
    }

    fn read16les(&mut self, reg: &Register) -> Result<i16> {
        let mut buf = [0u8; 2];

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.read(&mut buf));

        let mut curs = Cursor::new(buf);

        let val = try!(curs.read_i16::<LittleEndian>());

        Ok(val)
    }

    fn read24(&mut self, reg: &Register) -> Result<u32> {
        let mut buf = [0u8; 3];

        try!(self.i2c_device.write(&[reg.into()]));
        try!(self.i2c_device.read(&mut buf));

        let mut curs = Cursor::new(buf);

        let val = try!(curs.read_uint::<Endiness>(3));

        Ok(val as u32)
    }

    fn read_coefficients(&mut self) -> Result<()> {
        self.calibration.dig_t1 = try!(self.read16le(&Register::DigT1));
        self.calibration.dig_t2 = try!(self.read16les(&Register::DigT2));
        self.calibration.dig_t3 = try!(self.read16les(&Register::DigT3));

        self.calibration.dig_p1 = try!(self.read16le(&Register::DigP1));
        self.calibration.dig_p2 = try!(self.read16les(&Register::DigP2));
        self.calibration.dig_p3 = try!(self.read16les(&Register::DigP3));
        self.calibration.dig_p4 = try!(self.read16les(&Register::DigP4));
        self.calibration.dig_p5 = try!(self.read16les(&Register::DigP5));
        self.calibration.dig_p6 = try!(self.read16les(&Register::DigP6));
        self.calibration.dig_p7 = try!(self.read16les(&Register::DigP7));
        self.calibration.dig_p8 = try!(self.read16les(&Register::DigP8));
        self.calibration.dig_p9 = try!(self.read16les(&Register::DigP9));

        Ok(())
    }

    fn begin(&mut self) -> Result<()> {
        if try!(self.read8(&Register::ChipId)) != 0x58 {
            return Err(Error::Other(()));
        }

        try!(self.read_coefficients());
        try!(self.write8(&Register::Control, 0x3F));

        Ok(())
    }

    pub fn read_temperature(&mut self) -> Result<f32> {
        let mut adc_t = try!(self.read24(&Register::TemperatureData)) as i32;
        adc_t >>= 4;

        let t1 = self.calibration.dig_t1 as i32;
        let t2 = self.calibration.dig_t2 as i32;
        let t3 = self.calibration.dig_t3 as i32;

        let var1 = ((((adc_t >> 3) - (t1 << 1))) * t2) >> 11;
        let var2 = (((((adc_t >> 4) - t1) * ((adc_t >> 4) - t1)) >> 12) * t3) >> 14;

        self.fine = var1 + var2;

        let t = ((self.fine * 5 + 128) >> 8) as f32;
        Ok(t / 100.)
    }

    pub fn read_pressure(&mut self) -> Result<f32> {
        // This is done to initialize the self.fine value.
        try!(self.read_temperature());

        let adc_p = (try!(self.read24(&Register::PressureData)) as i32) >> 4;

        let p1 = self.calibration.dig_p1 as i64;
        let p2 = self.calibration.dig_p2 as i64;
        let p3 = self.calibration.dig_p3 as i64;
        let p4 = self.calibration.dig_p4 as i64;
        let p5 = self.calibration.dig_p5 as i64;
        let p6 = self.calibration.dig_p6 as i64;
        let p7 = self.calibration.dig_p7 as i64;
        let p8 = self.calibration.dig_p8 as i64;
        let p9 = self.calibration.dig_p9 as i64;

        let var1 = (self.fine as i64) - 128000;

        let var2 = var1 * var1 * p6;
        let var2 = var2 + ((var1 * p5) << 17);
        let var2 = var2 + (p4 << 35);

        let var1 = ((var1 * var1 * p3) >> 8) + ((var1 * p2) << 12);
        let var1 = ((((1i64) << 47) + var1)) * (p1) >> 33;

        if var1 == 0 {
            return Err(Error::Other(()));
        }


        let p: i64 = 1048576 - adc_p as i64;
        let p = (((p << 31) - var2) * 3125) / var1;

        let var1 = (p9 * (p >> 13) * (p >> 13)) >> 25;
        let var2 = (p8 * p) >> 19;

        let p = ((p + var1 + var2) >> 8) + (p7 << 4);

        Ok(p as f32 / 256.)
    }

    /// Reads the altitude from the sensor relative to the given sea level pressure.
    pub fn read_altitude_relative_to(&mut self, sea_level_hpa: f32) -> Result<f32> {
        let pressure = try!(self.read_pressure()) as f32 / 100.;

        let altitude = 44330. * (1. - (pressure / sea_level_hpa).powf(0.1903));
        Ok(altitude)
    }

    /// Reads the altitude from the sensor relative to the zeroed altitude set by .zero(),
    /// Bmp280Builder.ground_pressure(), or Bmp280Builder.build() if you do not set a ground
    /// pressure.
    pub fn read_altitude(&mut self) -> Result<f32> {
        let pressure = self.ground_pressure;

        self.read_altitude_relative_to(pressure)
    }
}