1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! # bluenoisers
//!
//! Implementation of blue noise in Rust using Fast Poisson Disk Sampling.
//! This implementation can be used for images (2-dimensional), for volumes (3-dimensional) and in higher dimensions.
//!
//! For background information see here: https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
//!
//! Documentation is here: https://connyonny.github.io/bluenoisers/bluenoisers

extern crate rand;
use rand::Rng;

use std::cmp::min;

#[derive(Debug)]
struct BackgroundGrid {
    data: Vec<usize>,
    dimensions: Vec<f64>,
    min_dst_sqr: f64,
    cell_size: f64,
    cell_count: Vec<usize>,
    cell_multiplicators: Vec<usize>,
}

impl BackgroundGrid {
    pub fn new(dimensions: Vec<f64>, min_distance: f64) -> BackgroundGrid {
        assert!(min_distance > 0.0);
        let dimension = dimensions.len();
        let cell_size = min_distance / (dimension as f64).sqrt();
        let cell_count: Vec<usize> = dimensions.iter()
                                               .map(|x| (x / (cell_size as f64)).ceil() as usize)
                                               .collect();
        let data_size = cell_count.iter().fold(1_usize, |accu, x| accu * x);
        let mut cell_multiplicators = Vec::new();
        let mut multi_accu = 1_usize;
        for i in 0..dimension {
            cell_multiplicators.push(multi_accu);
            multi_accu *= cell_count[i];
        }
        BackgroundGrid {
            data: vec![0; data_size],
            dimensions: dimensions,
            min_dst_sqr: min_distance * min_distance,
            cell_size: cell_size,
            cell_count: cell_count,
            cell_multiplicators: cell_multiplicators,
        }
    }
    pub fn dst_sqr(x: &Vec<f64>, y: &Vec<f64>) -> f64 {
        debug_assert_eq!(x.len(), y.len());
        x.iter().zip(y.iter()).fold(0_f64, |accu, (xx, yx)| {
            let diff = xx - yx;
            accu + diff * diff
        })
    }
    fn calc_idx(&self, cell_id: &Vec<usize>) -> usize {
        self.cell_multiplicators
            .iter()
            .zip(cell_id.iter())
            .skip(1)
            .fold(cell_id[0], |accu, (multi, cell)| accu + multi * cell)
    }
    pub fn insert(&mut self,
                  sample_position: Vec<f64>,
                  samples: &mut Vec<Vec<f64>>)
                  -> Result<usize, ()> {
        if sample_position.iter()
                          .zip(self.dimensions.iter())
                          .any(|(samp_x, dim_x)| *samp_x < 0_f64 || samp_x >= dim_x) {
            return Err(());
        }
        let dimension = self.dimensions.len();
        debug_assert_eq!(sample_position.len(), dimension);
        let cell_id: Vec<usize> = sample_position.iter()
                                                 .map(|x| (*x / self.cell_size) as usize)
                                                 .collect();
        let samp_idx = self.calc_idx(&cell_id);
        debug_assert!(cell_id.iter().zip(self.cell_count.iter()).all(|(cid, cc)| cid < cc));
        let cell_offs = (self.min_dst_sqr / (self.cell_size as f64)).ceil() as usize;
        let min_cell: Vec<usize> = cell_id.iter().map(|x| x.saturating_sub(cell_offs)).collect();
        let max_cell: Vec<usize> = cell_id.iter()
                                          .zip(self.cell_count.iter())
                                          .map(|(x, size_x)| min(x + cell_offs, size_x - 1))
                                          .collect();
        debug_assert!(min_cell.iter()
                              .zip(max_cell.iter())
                              .zip(cell_id.iter())
                              .all(|((cmin, cmax), c)| cmin <= c && c <= cmax));
        let mut indices = min_cell.clone();
        let mut checked_own_idx = false;
        loop {
            debug_assert!(min_cell.iter()
                                  .zip(max_cell.iter())
                                  .zip(indices.iter())
                                  .all(|((cmin, cmax), c)| cmin <= c && c <= cmax));
            let idx = self.calc_idx(&indices);
            if idx == samp_idx {
                checked_own_idx = true;
            }
            match self.data[idx] {
                0 => (),
                other_id => {
                    let other_sample = &samples[other_id - 1];
                    if BackgroundGrid::dst_sqr(&sample_position, other_sample) < self.min_dst_sqr {
                        return Err(());
                    }
                }
            }
            // loop exit check
            if indices == max_cell {
                break;
            }
            // iterate indices
            for i in 0..dimension {
                if indices[i] == max_cell[i] {
                    indices[i] = min_cell[i];
                } else {
                    indices[i] += 1;
                    break;
                }
            }
        }
        // no collission found
        debug_assert!(checked_own_idx,
                      format!("Didn't check own idx.\n\tMin cells: {:?}\n\tMax cells: \
                               {:?}\n\tself cells: {:?}",
                              min_cell,
                              max_cell,
                              cell_id));
        samples.push(sample_position);
        debug_assert_eq!(self.data[samp_idx], 0);
        self.data[samp_idx] = samples.len();
        Ok(samples.len())
    }
}

fn polar_to_cartesian(radius: f64, angles: Vec<f64>) -> Vec<f64> {
    let sines: Vec<f64> = angles.iter().map(|x| x.sin()).collect();
    (0..angles.len() + 1)
        .map(|i| {
            sines.iter().take(i).fold(radius, |accu, sine| accu * sine) *
            match angles.get(i) {
                Some(ang) => ang.cos(),
                None => 1_f64,
            }
        })
        .collect()
}

pub struct BlueNoiseIterator {
    dimensions: Vec<f64>,
    min_distance: f64,
    k_abort: usize,
    samples: Vec<Vec<f64>>,
    bggrid: BackgroundGrid,
    active: Vec<usize>,
    active_idx: usize,
    next_active: Vec<usize>,
}

impl BlueNoiseIterator {
    fn new(dimensions: Vec<f64>, min_distance: f64, k_abort: usize) -> BlueNoiseIterator {
        BlueNoiseIterator {
            dimensions: dimensions.clone(),
            min_distance: min_distance,
            k_abort: k_abort,
            samples: Vec::new(),
            bggrid: BackgroundGrid::new(dimensions, min_distance),
            active: Vec::new(),
            active_idx: 0,
            next_active: Vec::new(),
        }
    }
}

impl Iterator for BlueNoiseIterator {
    type Item = Vec<f64>;

    fn next(&mut self) -> Option<Vec<f64>> {
        let dimension = self.dimensions.len();
        // we don't need to store the RNG because it is one per thread and lazyli initialized
        let mut rng = rand::thread_rng();
        // first sample
        if self.samples.is_empty() {
            let initial_sample: Vec<f64> = self.dimensions
                                               .iter()
                                               .map(|x| rng.gen_range::<f64>(0_f64, *x))
                                               .collect();
            let initial_sample_id = self.bggrid
                                        .insert(initial_sample.clone(), &mut self.samples)
                                        .unwrap();
            debug_assert_eq!(initial_sample_id, 1);
            self.active.push(initial_sample_id);
            return Some(initial_sample);
        }
        // if active_idx has iterated completely, use the next_active list and start over
        if self.active_idx >= self.active.len() {
            self.active_idx = 0;
            self.active = self.next_active.clone();
            self.next_active = Vec::new();
        }
        if self.active.is_empty() {
            return None;
        }
        let current_id = self.active[self.active_idx];
        let current_samp = self.samples[current_id - 1].clone();
        for _ in 0..self.k_abort {
            let radius = rng.gen_range::<f64>(self.min_distance, 2_f64 * self.min_distance);
            let angles = (0..dimension - 1)
                             .map(|_| rng.gen_range::<f64>(0_f64, 2_f64 * std::f64::consts::PI))
                             .collect();
            let samp_offs = polar_to_cartesian(radius, angles);
            debug_assert_eq!(samp_offs.len(), dimension);
            // if polar_to_cartesian would return an iterator, this might be more efficient
            let samp = samp_offs.into_iter()
                                .zip(current_samp.iter())
                                .map(|(offs, x)| x + offs)
                                .collect();
            match self.bggrid.insert(samp, &mut self.samples) {
                Ok(new_samp_id) => {
                    self.next_active.push(current_id);
                    self.next_active.push(new_samp_id);
                    self.active_idx += 1;
                    return Some(self.samples[new_samp_id - 1].clone());
                }
                Err(_) => {
                    // wait for the next iteration
                }
            }
        }
        self.active_idx += 1;
        self.next()
    }
}

/// Generates blue noise samples
///
/// # Arguments
///
/// * `dimensions` - How broad in each dimension the space to be filled is. Its length determines the dimensionality, i.e. length `n` generates an `n`-dimensional problem space.
/// * `min_distance` - How far away from each other should samples at least be, euclidean distance
/// * `k_abort` - How often should the generator try to generate a valid new neighbor of an existing point before giving that existing point up as starting point. A value of 30 is recommended.
///
/// The samples returned are in order of generation.
/// Each sample is at most `2 * min_distance` away from a previous sample (except the first sample, of course).
pub fn blue_noise(dimensions: Vec<f64>, min_distance: f64, k_abort: usize) -> Vec<Vec<f64>> {
    // this method avoids copying the samples once more vs a simple it.collect()
    let mut it = BlueNoiseIterator::new(dimensions, min_distance, k_abort);
    // force generation of all the samples
    while let Some(_) = it.next() {}
    it.samples
}

/// Creates an iterator over the blue noise samples, generating them on demand.
/// This is useful for pipelined processing or when you only need to `take` some amount of samples
/// Otherwise this is the same as `blue_noise`
pub fn blue_noise_iter(dimensions: Vec<f64>,
                       min_distance: f64,
                       k_abort: usize)
                       -> BlueNoiseIterator {
    BlueNoiseIterator::new(dimensions, min_distance, k_abort)
}

#[test]
fn grid_corners() {
    let mut grid = BackgroundGrid::new(vec![35_f64, 9_f64], 4.0);
    let mut samples = Vec::new();
    assert_eq!(grid.cell_count.len(), 2);
    assert_eq!(grid.insert(vec![0., 9.], &mut samples), Err(()));
    assert_eq!(samples.len(), 0);
    assert_eq!(grid.insert(vec![0., 0.], &mut samples), Ok(1));
    assert_eq!(samples.len(), 1);
    assert_eq!(grid.insert(vec![34., 0.], &mut samples), Ok(2));
    assert_eq!(samples.len(), 2);
    assert_eq!(grid.insert(vec![0., 8.], &mut samples), Ok(3));
    assert_eq!(samples.len(), 3);
    assert_eq!(grid.insert(vec![34., 8.], &mut samples), Ok(4));
    assert_eq!(samples.len(), 4);
}

#[cfg(test)]
mod tests {
    use super::*;
    extern crate rand;
    use rand::Rng;
    use std::f64;
    #[test]
    fn sanity_3d() {
        sanity_nd(3, 15., 25.);
    }
    #[test]
    #[ignore]
    fn sanity_6d() {
        sanity_nd(6, 6., 6.5);
    }
    fn sanity_nd(dimension: usize, minr: f64, maxr: f64) {
        let mut rng = rand::thread_rng();
        let radius = 3.;
        let mut dimensions: Vec<f64> = Vec::new();
        for _ in 0..dimension {
            dimensions.push(rng.gen_range::<f64>(minr, maxr));
        }
        assert_eq!(dimensions.len(), dimension);
        let samples = blue_noise(dimensions, radius, 30);
        println!("there are {} samples.", samples.len());
        for s1 in samples.iter() {
            let mut mindst = f64::INFINITY;
            for s2 in samples.iter() {
                if s1 == s2 {
                    continue;
                }
                let dst = super::BackgroundGrid::dst_sqr(s1, s2).sqrt();
                if dst < mindst {
                    mindst = dst;
                }
            }
            assert!(mindst >= radius); // distance constraint violated
            assert!(mindst < 2_f64 * radius); // not nicely spread in the room
        }
    }
    fn get_image(radius: f64, size: usize) -> Vec<Vec<bool>> {
        let samples = blue_noise(vec![size as f64, size as f64], radius, 30);
        let mut image = vec![vec![false; size]; size];
        for s in samples {
            image[s[1] as usize][s[0] as usize] = true;
        }
        image
    }
    #[test]
    fn sanity_2d() {
        let size: isize = 128;
        let radius: isize = 8;
        let image = get_image(radius as f64, size as usize);
        for y in 0..size {
            for x in 0..size {
                if image[y as usize][x as usize] {
                    for dy in 0..radius {
                        for dx in 0..radius {
                            if dx == 0 && dy == 0 {
                                continue;
                            }
                            image.get((y + dy) as usize).map(|line| {
                                match line.get((x + dx) as usize) {
                                    Some(&true) => {
                                        // the -1 is to accomodate for rounding errors
                                        assert!(dx * dx + dy * dy >= (radius - 1) * (radius - 1));
                                    }
                                    _ => {}
                                }
                            });
                        }
                    }
                }
            }
        }
    }
}