1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//! Utilities to manipulate generic memory
#![macro_use]

use marker_blanket::marker_blanket;

#[macro_export]
macro_rules! KB {
    ($val:expr) => {
        $val * 1024
    };
}
#[macro_export]
macro_rules! MB {
    ($val:expr) => {
        $val * 1024 * 1024
    };
}

/// Generic address for the purpose of this module's methods.
/// Anything that can be offset by a usize and yield another
/// address works as an address.
#[marker_blanket]
pub trait Address:
    'static
    + Ord
    + Copy
    + core::ops::Add<usize, Output = Self>
    + core::ops::Sub<usize, Output = Self>
    + core::ops::Sub<Self, Output = usize>
    + Into<usize>
{
}

/// Abstract region that can contain addresses
pub trait Region<A: Address> {
    fn contains(&self, address: A) -> bool;
}

/// Iterator producing block-region pairs,
/// where each memory block corresponds to each region
pub struct OverlapIterator<'a, A, R, I>
where
    A: Address,
    R: Region<A>,
    I: Iterator<Item = R>,
{
    memory: &'a [u8],
    regions: I,
    base_address: A,
}

/// Anything that can be sliced in blocks, each block
/// corresponding to a region in a region sequence
pub trait IterableByOverlaps<'a, A, R, I>
where
    A: Address,
    R: Region<A>,
    I: Iterator<Item = R>,
{
    fn overlaps(self, block: &'a [u8], base_address: A) -> OverlapIterator<A, R, I>;
}

impl<'a, A, R, I> Iterator for OverlapIterator<'a, A, R, I>
where
    A: Address,
    R: Region<A>,
    I: Iterator<Item = R>,
{
    type Item = (&'a [u8], R, A);

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(region) = self.regions.next() {
            let mut block_range = (0..self.memory.len())
                .skip_while(|index| !region.contains(self.base_address + *index))
                .take_while(|index| region.contains(self.base_address + *index));
            if let Some(start) = block_range.next() {
                let end = block_range.last().unwrap_or(start) + 1;
                return Some((&self.memory[start..end], region, self.base_address + start));
            }
        }
        None
    }
}

/// Blanket implementation of overlaps iterator for any region iterator
impl<'a, A, R, I> IterableByOverlaps<'a, A, R, I> for I
where
    A: Address,
    R: Region<A>,
    I: Iterator<Item = R>,
{
    fn overlaps(self, memory: &'a [u8], base_address: A) -> OverlapIterator<A, R, I> {
        OverlapIterator { memory, regions: self, base_address }
    }
}

#[cfg(not(target_arch = "arm"))]
#[doc(hidden)]
pub mod doubles {
    use super::*;
    pub type FakeAddress = usize;

    #[derive(Debug, PartialEq, Copy, Clone)]
    pub struct FakeRegion {
        pub start: FakeAddress,
        pub size: usize,
    }

    impl Region<FakeAddress> for FakeRegion {
        fn contains(&self, address: FakeAddress) -> bool {
            (self.start <= address) && ((self.start + self.size) > address)
        }
    }
}

#[cfg(test)]
mod test {
    use super::{doubles::*, *};

    #[test]
    fn iterating_over_regions_starting_before_them() {
        // Given
        const MEMORY_SIZE: usize = 0x50;
        let memory = [0xFFu8; MEMORY_SIZE];
        let memory_slice = &memory[..];
        let base_address = 0x20;

        let regions =
            [FakeRegion { start: 0x30, size: 0x10 }, FakeRegion { start: 0x40, size: 0x05 }];

        // When
        let pairs: Vec<_> = regions.iter().copied().overlaps(memory_slice, base_address).collect();

        // Then
        assert_eq!(pairs.len(), 2);

        let (block, region, address) = pairs[0];
        assert_eq!(block, &memory[0x10..0x20]);
        assert_eq!(region, regions[0]);
        assert_eq!(address, regions[0].start);
        let (block, region, address) = pairs[1];
        assert_eq!(block, &memory[0x20..0x25]);
        assert_eq!(region, regions[1]);
        assert_eq!(address, regions[1].start);
    }

    #[test]
    fn iterating_over_regions_starting_in_the_middle() {
        // Given
        const MEMORY_SIZE: usize = 30;
        let memory = [0; MEMORY_SIZE];
        let memory_slice = &memory[..];
        let base_address = 15;

        let regions = [FakeRegion { start: 10, size: 20 }, FakeRegion { start: 30, size: 100 }];

        // When
        let pairs: Vec<_> = regions.iter().copied().overlaps(memory_slice, base_address).collect();

        // Then
        assert_eq!(pairs.len(), 2);

        let (block, region, address) = pairs[0];
        assert_eq!(block, &memory[0..15]);
        assert_eq!(region, regions[0]);
        assert_eq!(address, base_address);

        let (block, region, address) = pairs[1];
        assert_eq!(block, &memory[15..30]);
        assert_eq!(region, regions[1]);
        assert_eq!(address, regions[1].start);
    }

    #[test]
    fn single_byte() {
        // Given
        const MEMORY_SIZE: usize = 1;
        let memory = [0; MEMORY_SIZE];
        let memory_slice = &memory[..];
        let base_address = 15;

        let regions = [FakeRegion { start: 10, size: 20 }, FakeRegion { start: 30, size: 100 }];

        // When
        let pairs: Vec<_> = regions.iter().copied().overlaps(memory_slice, base_address).collect();

        // Then
        assert_eq!(pairs.len(), 1);

        let (block, region, address) = pairs[0];
        assert_eq!(block, &memory[0..1]);
        assert_eq!(region, regions[0]);
        assert_eq!(address, base_address);
    }

    #[test]
    fn conversion_macros() {
        assert_eq!(KB!(16), 0x4000);
        assert_eq!(MB!(1), 0x100000);
    }
}