1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// (C)opyleft 2013-2015 Frank Denis

/*!
 * Bloom filter for Rust
 *
 * This is a simple but fast Bloom filter implementation, that requires only
 * 2 hash functions, generated with SipHash-2-4 using randomized keys.
 */

#![crate_name="bloomfilter"]
#![crate_type = "rlib"]
#![warn(non_camel_case_types, non_upper_case_globals, unused_qualifications)]

extern crate rand;
extern crate bit_vec;

use std::cmp;
use std::f64;
use std::hash::{Hash, Hasher, SipHasher};
use bit_vec::BitVec;

#[cfg(test)]
use rand::Rng;

/// Bloom filter structure
pub struct Bloom {
    bitmap: BitVec,
    bitmap_bits: u64,
    k_num: u32,
    sips: [SipHasher; 2]
}

impl Bloom {
/// Create a new bloom filter structure.
/// bitmap_size is the size in bytes (not bits) that will be allocated in memory
/// items_count is an estimation of the maximum number of items to store.
    pub fn new(bitmap_size: usize, items_count: usize) -> Bloom {
        assert!(bitmap_size > 0 && items_count > 0);
        let bitmap_bits = (bitmap_size as u64) * 8u64;
        let k_num = Bloom::optimal_k_num(bitmap_bits, items_count);
        let bitmap = BitVec::from_elem(bitmap_bits as usize, false);
        let sips = [ Bloom::sip_new(), Bloom::sip_new() ];
        Bloom {
            bitmap: bitmap,
            bitmap_bits: bitmap_bits,
            k_num: k_num,
            sips: sips
        }
    }

/// Create a new bloom filter structure.
/// items_count is an estimation of the maximum number of items to store.
/// fp_p is the wanted rate of false positives, in ]0.0, 1.0[
    pub fn new_for_fp_rate(items_count: usize, fp_p: f64) -> Bloom {
        let bitmap_size = Bloom::compute_bitmap_size(items_count, fp_p);
        Bloom::new(bitmap_size, items_count)
    }

/// Compute a recommended bitmap size for items_count items
/// and a fp_p rate of false positives.
/// fp_p obviously has to be within the ]0.0, 1.0[ range.
    pub fn compute_bitmap_size(items_count: usize, fp_p: f64) -> usize {
        assert!(items_count > 0);
        assert!(fp_p > 0.0 && fp_p < 1.0);
        let log2 = f64::consts::LN_2;
        let log2_2 = log2 * log2;
        ((items_count as f64) * f64::ln(fp_p) / (-8.0 * log2_2)).ceil() as usize
    }

/// Record the presence of an item.
    pub fn set<T>(& mut self, item: T) where T: Hash {
        let mut hashes = [ 0u64, 0u64 ];
        for k_i in (0..self.k_num) {
            let bit_offset = (self.bloom_hash(& mut hashes, &item, k_i)
                              % self.bitmap_bits) as usize;
            self.bitmap.set(bit_offset, true);
        }
    }

/// Check if an item is present in the set.
/// There can be false positives, but no false negatives.
    pub fn check<T>(&self, item: T) -> bool where T: Hash {
        let mut hashes = [ 0u64, 0u64 ];
        for k_i in (0..self.k_num) {
            let bit_offset = (self.bloom_hash(& mut hashes, &item, k_i)
                              % self.bitmap_bits) as usize;
            if self.bitmap.get(bit_offset).unwrap() == false {
                return false;
            }
        }
        true
    }

/// Record the presence of an item in the set,
/// and return the previous state of this item.
    pub fn check_and_set<T>(&mut self, item: T)
                               -> bool where T: Hash {
        let mut hashes = [ 0u64, 0u64 ];
        let mut found = true;
        for k_i in (0..self.k_num) {
            let bit_offset = (self.bloom_hash(& mut hashes, &item, k_i)
                              % self.bitmap_bits) as usize;
            if self.bitmap.get(bit_offset).unwrap() == false {
                found = false;
                self.bitmap.set(bit_offset, true);
            }
        }
        found
    }

/// Return the number of bits in the filter
    pub fn number_of_bits(&self) -> u64 {
        self.bitmap_bits
    }

/// Return the number of hash functions used for `check` and `set` 
    pub fn number_of_hash_functions(&self) -> u32 {
        self.k_num
    }

    fn optimal_k_num(bitmap_bits: u64, items_count: usize) -> u32 {
        let m = bitmap_bits as f64;
        let n = items_count as f64;
        let k_num = (m / n * f64::ln(2.0f64)).ceil() as u32;
        cmp::max(k_num, 1)
    }

    fn bloom_hash<T>(&self, hashes: & mut [u64; 2],
                  item: &T, k_i: u32) -> u64 where T: Hash {
        if k_i < 2 {
            let sip = &mut self.sips[k_i as usize].clone();
            item.hash(sip);
            let hash = sip.finish();
            hashes[k_i as usize] = hash;
            hash
        } else {
            hashes[0].wrapping_add((k_i as u64).wrapping_mul(hashes[1]) % 0xffffffffffffffc5)
        }
    }

    fn sip_new() -> SipHasher {
        let mut rng = rand::thread_rng();
        SipHasher::new_with_keys(rand::Rand::rand(& mut rng),
                                 rand::Rand::rand(& mut rng))
    }
}

#[test]
fn bloom_test_set() {
    let mut bloom = Bloom::new(10, 80);
    let key: &Vec<u8> = &rand::thread_rng().gen_iter::<u8>().take(16).collect();
    assert!(bloom.check(key) == false);
    bloom.set(&key);
    assert!(bloom.check(key.clone()) == true);
}

#[test]
fn bloom_test_check_and_set() {
    let mut bloom = Bloom::new(10, 80);
    let key: &Vec<u8> = &rand::thread_rng().gen_iter::<u8>().take(16).collect();
    assert!(bloom.check_and_set(key) == false);
    assert!(bloom.check_and_set(key.clone()) == true);
}