1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

extern crate bit_vec;
use bit_vec::BitVec;

use std::hash::Hash;
use std::hash::Hasher;
use std::hash::BuildHasher;

use std::collections::hash_map::RandomState;

/// Calculate the probability of getting a false positive
///
/// # Arguments
/// * `n_buckets`: number of buckets
/// * `n_hashers`: number of hashers
/// * `n_elems`: number of elements
fn false_positive_rate(n_buckets: usize, n_hashers: usize, n_elems: usize)
    -> f32
{
    let k = n_hashers as f32;
    let n = n_elems as f32;
    let m = n_buckets as f32;
        
    (1. - ((-k * n) / m).exp()).powf(k)
}

fn min_n_buckets(n_elems: usize, fp_rate: f32) -> usize
{
    let n = n_elems as f32;

    (-1. * n * fp_rate.ln() / (2f32.ln().powf(2.))).ceil() as usize
}

/// Calculate the optimal number of hashers
///
/// # Arguments
/// * `n_buckets`: number of buckets
/// * `n_elems`: number of elemements
fn optimal_n_hashers(n_buckets: usize, n_elems: usize) -> usize
{
    let n = n_elems as f32;
    let m = n_buckets as f32;

    ((m / n) * 2f32.ln()).ceil() as usize
}

/// Space-efficient probabilistic hash set
#[derive(Debug)]
pub struct BloomFilter
{
    buffer: BitVec,
    size: usize,
    hashers: Vec<RandomState>
}

impl BloomFilter
{
    /// Build a Bloom Filter with a specified false positive rate
    ///
    /// # Arguments
    /// * `n_elems`: expected number of elements
    /// * `fp_rate`: desired false positive rate (0.0 -> 1.0)
    pub fn new_with_fp(n_elems: usize, fp_rate: f32) -> BloomFilter
    {
        let min_buckets = min_n_buckets(n_elems, fp_rate);
        let n_hashers = optimal_n_hashers(min_buckets, n_elems);

        BloomFilter {
            size: 0,
            buffer: BitVec::from_elem(min_buckets, false),
            hashers: (0..n_hashers).map(|_| RandomState::new()).collect()
        }
    }

    /// Create a new Bloom Filter with specified buffer size
    ///
    /// # Arguments
    /// * `n_elems`: expected number of elements
    /// * `size`: desired buffer size
    pub fn new_with_size(n_elems: usize, size: usize) -> BloomFilter
    {
        let n_hashers = optimal_n_hashers(size, n_elems);

        BloomFilter {
            size: 0,
            buffer: BitVec::from_elem(size, false),
            hashers: (0..n_hashers).map(|_| RandomState::new()).collect()
        }
    }

    /// Add a member
    pub fn add<T>(&mut self, e: &T)
        where T: Hash
    {
        for idx in self.indexes(e) {
            self.buffer.set(idx, true);
        }

        self.size += 1;
    }

    /// Check membership
    pub fn may_contain<T>(&self, e: &T) -> bool
        where T: Hash
    {
        let mut may_contain = true;

        for idx in self.indexes(e) {
            may_contain &= self.buffer.get(idx).unwrap();
        }

        may_contain
    }

    /// Number of elements in the `BloomFilter`
    pub fn size(&self) -> usize
    {
        self.size
    }

    /// Number of buckets that a memebr can occupy
    pub fn buckets(&self) -> usize
    {
        self.buffer.capacity()
    }

    /// Number of hashers being used
    pub fn n_hashers(&self) -> usize
    {
        self.hashers.len()
    }

    /// False positive rate
    pub fn fp_rate(&self) -> f32
    {
        false_positive_rate(self.buckets(), self.n_hashers(), self.size())
    }

    /// The indexes that a element hashes to
    fn indexes<T>(&self, e: &T) -> Vec<usize>
        where T: Hash
    {
        let mut idxs = vec![];
        for h in &self.hashers {
            let mut hasher = h.build_hasher();
            e.hash(&mut hasher);
            idxs.push(hasher.finish() as usize % self.buffer.len()); 
        }
        idxs
    }
}

#[cfg(test)]
mod test
{
    use super::*;

    /// Test that the bloom filter will always return the same results
    #[test]
    fn test_is_deterministic()
    {
        let to_add = "do add this";
        let dont_add = 123;
        let mut filter = BloomFilter::new_with_size(1, 100);
        filter.add(&to_add);

        // Check membership twice to make sure that the results are reproducable
        // even though the hashers are being reset
        assert_eq!(true,  filter.may_contain(&to_add));
        assert_eq!(true,  filter.may_contain(&to_add));

        assert_eq!(false, filter.may_contain(&dont_add));
        assert_eq!(false, filter.may_contain(&dont_add));

    }

    #[test]
    fn test_size_increments()
    {
        let to_add = "do add this";

        let mut filter = BloomFilter::new_with_size(3, 100);
        filter.add(&to_add);
        filter.add(&to_add);
        filter.add(&to_add);

        assert_eq!(3, filter.size());
    }

    #[test]
    fn test_fp_rate_is_zero_no_elems()
    {
        let filter = BloomFilter::new_with_size(100, 100);
        assert_eq!(0.0, filter.fp_rate());
    }
}