1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
//! Main block aligner algorithm and supporting data structures.

#[cfg(feature = "simd_sse2")]
use crate::sse2::*;

#[cfg(feature = "simd_avx2")]
use crate::avx2::*;

#[cfg(feature = "simd_wasm")]
use crate::simd128::*;

#[cfg(feature = "simd_neon")]
use crate::neon::*;

use crate::scores::*;
use crate::cigar::*;

use std::{cmp, ptr, i16, alloc};
use std::ops::RangeInclusive;

#[cfg(feature = "mca")]
use std::arch::asm;

// Notes:
//
// R means row, C means column (typically stands for the DP tables)
//
// BLOSUM62 matrix max = 11, min = -4; gap open = -11 (includes extension), gap extend = -1
//
// Dynamic programming formula:
// R[i][j] = max(R[i - 1][j] + gap_extend, D[i - 1][j] + gap_open)
// C[i][j] = max(C[i][j - 1] + gap_extend, D[i][j - 1] + gap_open)
// D[i][j] = max(D[i - 1][j - 1] + matrix[query[i]][reference[j]], R[i][j], C[i][j])
//
// indexing (we want to calculate D11):
//      x0   x1
//    +--------
// 0x | 00   01
// 1x | 10   11
//
// note that 'x' represents any bit
//
// The term "block" gets used for two different things (unfortunately):
//
// 1. A square region of the DP matrix that shifts, grows, and shrinks.
// This is helpful for conceptually visualizing the algorithm.
//
// 2. A rectangular region representing only cells in the DP matrix that are calculated
// due to shifting or growing. Since the step size is smaller than the block size, the
// square blocks overlap. Only the non-overlapping new cells (a rectangular region) are
// computed in each step. This usage applies for the "block" in the "place_block" function
// (this is also sometimes known as the "compute rect" function).

/// Keeps track of internal state and some parameters for block aligner.
///
/// This does not describe the whole state. The allocated scratch spaces
/// and other local variables are also needed.
struct State<'a, M: Matrix> {
    query: &'a PaddedBytes,
    i: usize,
    reference: &'a PaddedBytes,
    j: usize,
    min_size: usize,
    max_size: usize,
    matrix: &'a M,
    gaps: Gaps,
    x_drop: i32
}

/// Keeps track of internal state and some parameters for block aligner for
/// sequence to profile alignment.
///
/// This does not describe the whole state. The allocated scratch spaces
/// and other local variables are also needed.
struct StateProfile<'a, P: Profile> {
    query: &'a PaddedBytes,
    i: usize,
    reference: &'a P,
    j: usize,
    min_size: usize,
    max_size: usize,
    x_drop: i32
}

/// Data structure storing the settings for block aligner.
pub struct Block<const TRACE: bool, const X_DROP: bool = false, const LOCAL_START: bool = false, const FREE_QUERY_START_GAPS: bool = false, const FREE_QUERY_END_GAPS: bool = false> {
    res: AlignResult,
    allocated: Allocated
}

macro_rules! align_core_gen {
    ($fn_name:ident, $matrix_or_profile:tt, $state:tt, $place_block_right_fn:path, $place_block_down_fn:path) => {
        #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
        #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
        #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
        #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
        #[allow(non_snake_case)]
        unsafe fn $fn_name<M: $matrix_or_profile>(&mut self, mut state: $state<M>) {
            // store the best alignment ending location for x drop alignment
            let mut best_max = 0i32;
            let mut best_argmax_i = 0usize;
            let mut best_argmax_j = 0usize;

            let mut prev_dir = Direction::Grow;
            let mut dir = Direction::Grow;
            let mut prev_size = 0;
            let mut block_size = state.min_size;

            // 32-bit score offsets
            let mut off = 0i32;
            let mut prev_off;
            let mut off_max = 0i32;

            // how many steps since the latest best score was encountered
            let mut y_drop_iter = 0;

            // how many steps where the X-drop threshold is met
            let mut x_drop_iter = 0;

            let mut i_ckpt = state.i;
            let mut j_ckpt = state.j;
            let mut off_ckpt = 0i32;

            // corner value that affects the score when shifting down then right, or right then down
            let mut D_corner = simd_set1_i16(MIN);

            loop {
                #[cfg(feature = "debug")]
                {
                    println!("i: {}", state.i);
                    println!("j: {}", state.j);
                    println!("{:?}", dir);
                    println!("block size: {}", block_size);
                }

                prev_off = off;

                // grow_D_max is an auxiliary value used when growing because it requires two separate
                // place_block steps
                let mut grow_D_max = simd_set1_i16(MIN);
                let mut grow_D_argmax_i = simd_set1_i16(0);
                let mut grow_D_argmax_j = simd_set1_i16(0);
                let (D_max, D_argmax_i, D_argmax_j, mut right_max, mut down_max) = match dir {
                    Direction::Right => {
                        off = off_max;
                        #[cfg(feature = "debug")]
                        println!("off: {}", off);
                        let off_add = simd_set1_i16(clamp(prev_off - off));

                        if TRACE {
                            self.allocated.trace.add_block(state.i, state.j + block_size - STEP, STEP, block_size, true);
                        }

                        // offset previous columns with newly computed offset
                        Self::just_offset(block_size, self.allocated.D_col.as_mut_ptr(), self.allocated.C_col.as_mut_ptr(), off_add);

                        // compute new elements in the block as a result of shifting by the step size
                        // this region should be block_size x step
                        let (D_max, D_argmax_i, D_argmax_j) = $place_block_right_fn(
                            &state,
                            state.query,
                            state.reference,
                            &mut self.allocated.trace,
                            state.i,
                            state.j + block_size - STEP,
                            STEP,
                            block_size,
                            self.allocated.D_col.as_mut_ptr(),
                            self.allocated.C_col.as_mut_ptr(),
                            self.allocated.temp_buf1.as_mut_ptr(),
                            self.allocated.temp_buf2.as_mut_ptr(),
                            if prev_dir == Direction::Down { simd_adds_i16(D_corner, off_add) } else { simd_set1_i16(MIN) },
                            clamp(-off + (ZERO as i32)),
                            true
                        );

                        // sum of a couple elements on the right border
                        let right_max = Self::prefix_max(self.allocated.D_col.as_ptr());

                        // shift and offset bottom row
                        D_corner = Self::shift_and_offset(
                            block_size,
                            self.allocated.D_row.as_mut_ptr(),
                            self.allocated.R_row.as_mut_ptr(),
                            self.allocated.temp_buf1.as_mut_ptr(),
                            self.allocated.temp_buf2.as_mut_ptr(),
                            off_add
                        );
                        // sum of a couple elements on the bottom border
                        let down_max = Self::prefix_max(self.allocated.D_row.as_ptr());

                        (D_max, D_argmax_i, D_argmax_j, right_max, down_max)
                    },
                    Direction::Down => {
                        off = off_max;
                        #[cfg(feature = "debug")]
                        println!("off: {}", off);
                        let off_add = simd_set1_i16(clamp(prev_off - off));

                        if TRACE {
                            self.allocated.trace.add_block(state.i + block_size - STEP, state.j, block_size, STEP, false);
                        }

                        // offset previous rows with newly computed offset
                        Self::just_offset(block_size, self.allocated.D_row.as_mut_ptr(), self.allocated.R_row.as_mut_ptr(), off_add);

                        // compute new elements in the block as a result of shifting by the step size
                        // this region should be step x block_size
                        let (D_max, D_argmax_i, D_argmax_j) = $place_block_down_fn(
                            &state,
                            state.reference,
                            state.query,
                            &mut self.allocated.trace,
                            state.j,
                            state.i + block_size - STEP,
                            STEP,
                            block_size,
                            self.allocated.D_row.as_mut_ptr(),
                            self.allocated.R_row.as_mut_ptr(),
                            self.allocated.temp_buf1.as_mut_ptr(),
                            self.allocated.temp_buf2.as_mut_ptr(),
                            if prev_dir == Direction::Right { simd_adds_i16(D_corner, off_add) } else { simd_set1_i16(MIN) },
                            clamp(-off + (ZERO as i32)),
                            false
                        );

                        // sum of a couple elements on the bottom border
                        let down_max = Self::prefix_max(self.allocated.D_row.as_ptr());

                        // shift and offset last column
                        D_corner = Self::shift_and_offset(
                            block_size,
                            self.allocated.D_col.as_mut_ptr(),
                            self.allocated.C_col.as_mut_ptr(),
                            self.allocated.temp_buf1.as_mut_ptr(),
                            self.allocated.temp_buf2.as_mut_ptr(),
                            off_add
                        );
                        // sum of a couple elements on the right border
                        let right_max = Self::prefix_max(self.allocated.D_col.as_ptr());

                        (D_max, D_argmax_i, D_argmax_j, right_max, down_max)
                    },
                    Direction::Grow => {
                        D_corner = simd_set1_i16(MIN);
                        let grow_step = block_size - prev_size;

                        #[cfg(feature = "debug")]
                        println!("off: {}", off);
                        #[cfg(feature = "debug")]
                        println!("Grow down");

                        if TRACE {
                            self.allocated.trace.add_block(state.i + prev_size, state.j, prev_size, grow_step, false);
                        }

                        // down
                        // this region should be prev_size x prev_size
                        let (D_max1, D_argmax_i1, D_argmax_j1) = $place_block_down_fn(
                            &state,
                            state.reference,
                            state.query,
                            &mut self.allocated.trace,
                            state.j,
                            state.i + prev_size,
                            grow_step,
                            prev_size,
                            self.allocated.D_row.as_mut_ptr(),
                            self.allocated.R_row.as_mut_ptr(),
                            self.allocated.D_col.as_mut_ptr().add(prev_size),
                            self.allocated.C_col.as_mut_ptr().add(prev_size),
                            simd_set1_i16(MIN),
                            clamp(-off + (ZERO as i32)),
                            false
                        );

                        #[cfg(feature = "debug")]
                        println!("Grow right");

                        if TRACE {
                            self.allocated.trace.add_block(state.i, state.j + prev_size, grow_step, block_size, true);
                        }

                        // right
                        // this region should be block_size x prev_size
                        let (D_max2, D_argmax_i2, D_argmax_j2) = $place_block_right_fn(
                            &state,
                            state.query,
                            state.reference,
                            &mut self.allocated.trace,
                            state.i,
                            state.j + prev_size,
                            grow_step,
                            block_size,
                            self.allocated.D_col.as_mut_ptr(),
                            self.allocated.C_col.as_mut_ptr(),
                            self.allocated.D_row.as_mut_ptr().add(prev_size),
                            self.allocated.R_row.as_mut_ptr().add(prev_size),
                            simd_set1_i16(MIN),
                            clamp(-off + (ZERO as i32)),
                            true
                        );

                        let right_max = Self::prefix_max(self.allocated.D_col.as_ptr());
                        let down_max = Self::prefix_max(self.allocated.D_row.as_ptr());
                        grow_D_max = D_max1;
                        grow_D_argmax_i = D_argmax_i1;
                        grow_D_argmax_j = D_argmax_j1;

                        // must update the checkpoint saved values just in case
                        // the block must grow again from this position
                        let mut i = 0;
                        while i < block_size {
                            self.allocated.D_col_ckpt.set_vec(&self.allocated.D_col, i);
                            self.allocated.C_col_ckpt.set_vec(&self.allocated.C_col, i);
                            self.allocated.D_row_ckpt.set_vec(&self.allocated.D_row, i);
                            self.allocated.R_row_ckpt.set_vec(&self.allocated.R_row, i);
                            i += L;
                        }

                        if TRACE {
                            self.allocated.trace.save_ckpt();
                        }

                        (D_max2, D_argmax_i2, D_argmax_j2, right_max, down_max)
                    }
                };

                prev_dir = dir;
                let D_max_max = if FREE_QUERY_END_GAPS {
                    // can assume only the right region is computed when growing,
                    // since the min block size is greater than the query length
                    simd_slow_extract_i16(D_max, state.query.len() % L)
                } else {
                    simd_hmax_i16(D_max)
                };
                let grow_max = simd_hmax_i16(grow_D_max);
                // max score of the entire block
                // note that other than off_max and best_max, the other maxs are relative to the
                // offsets off and ZERO
                let max = cmp::max(D_max_max, grow_max);
                off_max = off + (max as i32) - (ZERO as i32);
                #[cfg(feature = "debug")]
                println!("down max: {}, right max: {}", down_max, right_max);

                y_drop_iter += 1;
                // if block grows but the best score does not improve, then the block must grow again
                let mut grow_no_max = dir == Direction::Grow;

                if off_max > best_max {
                    if FREE_QUERY_END_GAPS {
                        // can assume either growing (right region only) or shifting right, so
                        // can assume state.i == 0
                        let idx_j = simd_slow_extract_i16(D_argmax_j, state.query.len() % L) as usize;
                        best_argmax_i = state.query.len();
                        match dir {
                            Direction::Right => {
                                best_argmax_j = state.j + (block_size - STEP) + idx_j;
                            },
                            Direction::Grow => {
                                best_argmax_j = state.j + prev_size + idx_j;
                            },
                            _ => unreachable!(),
                        }
                    }

                    if X_DROP {
                        // TODO: move outside loop
                        // calculate location with the best score
                        let lane_idx = simd_hargmax_i16(D_max, D_max_max);
                        let idx_i = simd_slow_extract_i16(D_argmax_i, lane_idx) as usize;
                        let idx_j = simd_slow_extract_i16(D_argmax_j, lane_idx) as usize;
                        let r = idx_i + lane_idx;
                        let c = (block_size - STEP) + idx_j;

                        match dir {
                            Direction::Right => {
                                best_argmax_i = state.i + r;
                                best_argmax_j = state.j + c;
                            },
                            Direction::Down => {
                                best_argmax_i = state.i + c;
                                best_argmax_j = state.j + r;
                            },
                            Direction::Grow => {
                                // max could be in either block
                                if D_max_max >= grow_max {
                                    // grow right
                                    best_argmax_i = state.i + idx_i + lane_idx;
                                    best_argmax_j = state.j + prev_size + idx_j;
                                } else {
                                    // grow down
                                    let lane_idx = simd_hargmax_i16(grow_D_max, grow_max);
                                    let idx_i = simd_slow_extract_i16(grow_D_argmax_i, lane_idx) as usize;
                                    let idx_j = simd_slow_extract_i16(grow_D_argmax_j, lane_idx) as usize;
                                    best_argmax_i = state.i + prev_size + idx_j;
                                    best_argmax_j = state.j + idx_i + lane_idx;
                                }
                            }
                        }
                    }

                    if block_size < state.max_size {
                        // if able to grow in the future, then save the current location
                        // as a checkpoint
                        i_ckpt = state.i;
                        j_ckpt = state.j;
                        off_ckpt = off;

                        let mut i = 0;
                        while i < block_size {
                            self.allocated.D_col_ckpt.set_vec(&self.allocated.D_col, i);
                            self.allocated.C_col_ckpt.set_vec(&self.allocated.C_col, i);
                            self.allocated.D_row_ckpt.set_vec(&self.allocated.D_row, i);
                            self.allocated.R_row_ckpt.set_vec(&self.allocated.R_row, i);
                            i += L;
                        }

                        if TRACE {
                            self.allocated.trace.save_ckpt();
                        }

                        grow_no_max = false;
                    }

                    best_max = off_max;

                    y_drop_iter = 0;
                }

                if X_DROP {
                    if off_max < best_max - state.x_drop {
                        if x_drop_iter < X_DROP_ITER - 1 {
                            x_drop_iter += 1;
                        } else {
                            // x drop termination
                            break;
                        }
                    } else {
                        x_drop_iter = 0;
                    }
                }

                if state.i + block_size > state.query.len() && state.j + block_size > state.reference.len() {
                    // reached the end of the strings
                    break;
                }

                // first check if the shift direction is "forced" to avoid going out of bounds
                if state.j + block_size > state.reference.len() {
                    state.i += STEP;
                    dir = Direction::Down;
                    continue;
                }
                if state.i + block_size > state.query.len() {
                    state.j += STEP;
                    dir = Direction::Right;
                    continue;
                }

                // three decisions are made below (based on heuristics):
                // * whether to grow
                // * whether to shrink
                // * whether to shift right or down
                // TODO: better heuristics?

                // check if it is possible to grow
                let next_size = block_size * 2;
                if next_size <= state.max_size {
                    // if approximately (block_size / step) iterations has passed since the last best
                    // max, then it is time to grow
                    if y_drop_iter > (block_size / STEP) - 1 || grow_no_max {
                        // y drop grow block
                        prev_size = block_size;
                        block_size = next_size;
                        dir = Direction::Grow;

                        // return to checkpoint
                        state.i = i_ckpt;
                        state.j = j_ckpt;
                        off = off_ckpt;

                        let mut i = 0;
                        while i < prev_size {
                            self.allocated.D_col.set_vec(&self.allocated.D_col_ckpt, i);
                            self.allocated.C_col.set_vec(&self.allocated.C_col_ckpt, i);
                            self.allocated.D_row.set_vec(&self.allocated.D_row_ckpt, i);
                            self.allocated.R_row.set_vec(&self.allocated.R_row_ckpt, i);
                            i += L;
                        }

                        if TRACE {
                            self.allocated.trace.restore_ckpt();
                        }

                        y_drop_iter = 0;
                        continue;
                    }
                }

                // check if it is possible to shrink
                if SHRINK && block_size > state.min_size && y_drop_iter == 0 {
                    let shrink_max = cmp::max(
                        Self::suffix_max(self.allocated.D_row.as_ptr(), block_size),
                        Self::suffix_max(self.allocated.D_col.as_ptr(), block_size)
                    );
                    if shrink_max >= max {
                        // just to make sure it is not right or down shift so D_corner is not used
                        prev_dir = Direction::Grow;

                        block_size /= 2;
                        let mut i = 0;
                        while i < block_size {
                            self.allocated.D_col.copy_vec(i, i + block_size);
                            self.allocated.C_col.copy_vec(i, i + block_size);
                            self.allocated.D_row.copy_vec(i, i + block_size);
                            self.allocated.R_row.copy_vec(i, i + block_size);
                            i += L;
                        }

                        state.i += block_size;
                        state.j += block_size;

                        i_ckpt = state.i;
                        j_ckpt = state.j;
                        off_ckpt = off;

                        let mut i = 0;
                        while i < block_size {
                            self.allocated.D_col_ckpt.set_vec(&self.allocated.D_col, i);
                            self.allocated.C_col_ckpt.set_vec(&self.allocated.C_col, i);
                            self.allocated.D_row_ckpt.set_vec(&self.allocated.D_row, i);
                            self.allocated.R_row_ckpt.set_vec(&self.allocated.R_row, i);
                            i += L;
                        }

                        right_max = Self::prefix_max(self.allocated.D_col.as_ptr());
                        down_max = Self::prefix_max(self.allocated.D_row.as_ptr());

                        if TRACE {
                            self.allocated.trace.save_ckpt();
                        }

                        y_drop_iter = 0;
                    }
                }

                // move according to where the max is
                if down_max > right_max {
                    state.i += STEP;
                    dir = Direction::Down;
                } else {
                    state.j += STEP;
                    dir = Direction::Right;
                }
            }

            #[cfg(any(feature = "debug", feature = "debug_size"))]
            {
                println!("query size: {}, reference size: {}", state.query.len(), state.reference.len());
                println!("end block size: {}", block_size);
            }

            self.res = if X_DROP || FREE_QUERY_END_GAPS {
                AlignResult {
                    score: best_max,
                    query_idx: best_argmax_i,
                    reference_idx: best_argmax_j
                }
            } else {
                debug_assert!(state.i <= state.query.len());
                let score = off + match dir {
                    Direction::Right | Direction::Grow => {
                        let idx = state.query.len() - state.i;
                        debug_assert!(idx < block_size);
                        (self.allocated.D_col.get(idx) as i32) - (ZERO as i32)
                    },
                    Direction::Down => {
                        let idx = state.reference.len() - state.j;
                        debug_assert!(idx < block_size);
                        (self.allocated.D_row.get(idx) as i32) - (ZERO as i32)
                    }
                };
                AlignResult {
                    score,
                    query_idx: state.query.len(),
                    reference_idx: state.reference.len()
                }
            };
        }
    };
}

/// Place block right or down for sequence-profile alignment.
///
/// Although conceptually blocks are squares, this function is actually used to compute any
/// rectangular region. For example, when shifting a block right by some step
/// size, only the rectangular region with width = step size needs to be computed, since
/// the new shifted block will partially overlap with the previous block.
///
/// Assumes all inputs are already relative to the current offset.
///
/// Inside this function, everything will be treated as shifting right,
/// conceptually. The same process can be trivially used for shifting
/// down by calling this function with different parameters.
///
/// Right and down shifts must be handled separately since a sequence
/// is aligned to a profile.
macro_rules! place_block_profile_gen {
    ($fn_name:ident, $query: ident, $query_type: ty, $reference: ident, $reference_type: ty, $q: ident, $r: ident, $right: expr) => {
        #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
        #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
        #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
        #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
        #[allow(non_snake_case)]
        unsafe fn $fn_name<P: Profile>(_state: &StateProfile<P>,
                                       $query: $query_type,
                                       $reference: $reference_type,
                                       trace: &mut Trace,
                                       start_i: usize,
                                       start_j: usize,
                                       width: usize,
                                       height: usize,
                                       D_col: *mut i16,
                                       C_col: *mut i16,
                                       D_row: *mut i16,
                                       R_row: *mut i16,
                                       mut D_corner: Simd,
                                       relative_zero: i16,
                                       _right: bool) -> (Simd, Simd, Simd) {
            let gap_extend = simd_set1_i16($r.get_gap_extend() as i16);
            let (gap_extend_all, prefix_scan_consts) = get_prefix_scan_consts(gap_extend);
            let mut D_max = simd_set1_i16(MIN);
            let mut D_argmax_i = simd_set1_i16(0);
            let mut D_argmax_j = simd_set1_i16(0);

            let mut idx = 0;
            let mut gap_open_C = simd_set1_i16(MIN);
            let mut gap_close_C = simd_set1_i16(MIN);
            let mut gap_open_R = simd_set1_i16(MIN);
            let mut gap_close_R = simd_set1_i16(MIN);

            if width == 0 || height == 0 {
                return (D_max, D_argmax_i, D_argmax_j);
            }

            // hottest loop in the whole program
            for j in 0..width {
                let mut R01 = simd_set1_i16(MIN);
                let mut D11 = simd_set1_i16(MIN);
                let mut R11 = simd_set1_i16(MIN);
                let mut prev_trace_R = simd_set1_i16(0);

                if $right {
                    idx = start_j + j;
                    gap_open_C = $r.get_gap_open_right_C(idx);
                    gap_close_C = $r.get_gap_close_right_C(idx);
                    gap_open_R = $r.get_gap_open_right_R(idx);
                }

                let mut i = 0;
                while i < height {
                    let D10 = simd_load(D_col.add(i) as _);
                    let C10 = simd_load(C_col.add(i) as _);
                    let D00 = simd_sl_i16!(D10, D_corner, 1);
                    D_corner = D10;

                    if !$right {
                        idx = start_i + i;
                        gap_open_C = $r.get_gap_open_down_R(idx);
                        gap_open_R = $r.get_gap_open_down_C(idx);
                        gap_close_R = $r.get_gap_close_down_C(idx);
                    }

                    let scores = if $right {
                        $r.get_scores_pos(idx, halfsimd_loadu($q.as_ptr(start_i + i) as _), true)
                    } else {
                        $r.get_scores_aa(idx, $q.get(start_j + j), false)
                    };
                    D11 = simd_adds_i16(D00, scores);
                    if (!LOCAL_START && start_i + i == 0 && start_j + j == 0) || (FREE_QUERY_START_GAPS && $right && start_i + i == 0) {
                        D11 = simd_insert_i16!(D11, relative_zero, 0);
                    }

                    if LOCAL_START {
                        D11 = simd_max_i16(D11, simd_set1_i16(relative_zero));
                    }

                    let C11_open = simd_adds_i16(D10, simd_adds_i16(gap_open_C, gap_extend));
                    let C11 = simd_max_i16(simd_adds_i16(C10, gap_extend), C11_open);
                    let C11_end = if $right { simd_adds_i16(C11, gap_close_C) } else { C11 };
                    D11 = simd_max_i16(D11, C11_end);
                    // at this point, C11 is fully calculated and D11 is partially calculated

                    let D11_open = simd_adds_i16(D11, gap_open_R);
                    R11 = simd_prefix_scan_i16(D11_open, gap_extend, prefix_scan_consts);
                    // do prefix scan before using R01 to break up dependency chain that depends on
                    // the last element of R01 from the previous loop iteration
                    R11 = simd_max_i16(R11, simd_adds_i16(simd_broadcasthi_i16(R01), gap_extend_all));
                    // fully calculate D11 using R11
                    let R11_end = if $right { R11 } else { simd_adds_i16(R11, gap_close_R) };
                    D11 = simd_max_i16(D11, R11_end);
                    R01 = R11;

                    #[cfg(feature = "debug")]
                    {
                        print!("s:   ");
                        simd_dbg_i16(scores);
                        print!("D00: ");
                        simd_dbg_i16(simd_subs_i16(D00, simd_set1_i16(ZERO)));
                        print!("C11: ");
                        simd_dbg_i16(simd_subs_i16(C11, simd_set1_i16(ZERO)));
                        print!("R11: ");
                        simd_dbg_i16(simd_subs_i16(R11, simd_set1_i16(ZERO)));
                        print!("D11: ");
                        simd_dbg_i16(simd_subs_i16(D11, simd_set1_i16(ZERO)));
                    }

                    if TRACE {
                        let trace_D_C = simd_cmpeq_i16(D11, C11_end);
                        let trace_D_R = simd_cmpeq_i16(D11, R11_end);
                        #[cfg(feature = "debug")]
                        {
                            print!("D_C: ");
                            simd_dbg_i16(trace_D_C);
                            print!("D_R: ");
                            simd_dbg_i16(trace_D_R);
                        }
                        // compress trace with movemask to save space
                        let mask = simd_set1_i16(0xFF00u16 as i16);
                        let trace_data = simd_movemask_i8(simd_blend_i8(trace_D_C, trace_D_R, mask));
                        let temp_trace_R = simd_cmpeq_i16(R11, D11_open);
                        let trace_R = simd_sl_i16!(temp_trace_R, prev_trace_R, 1);
                        let trace_data2 = simd_movemask_i8(simd_blend_i8(simd_cmpeq_i16(C11, C11_open), trace_R, mask));
                        prev_trace_R = temp_trace_R;

                        if LOCAL_START {
                            let zero_mask = simd_cmpeq_i16(D11, simd_set1_i16(relative_zero));
                            trace.add_zero_mask(simd_movemask_i8(zero_mask) as TraceType);
                        }

                        trace.add_trace(trace_data as TraceType, trace_data2 as TraceType);
                    }

                    D_max = simd_max_i16(D_max, D11);

                    if X_DROP || (FREE_QUERY_END_GAPS && start_i + i + L > $query.len()) {
                        // keep track of the best score and its location
                        // note: can assume right = true and only the last SIMD vectors are needed for FREE_QUERY_END_GAPS,
                        // due to the limitation that the min block size must be greater than query length
                        let mask = simd_cmpeq_i16(D_max, D11);
                        D_argmax_i = simd_blend_i8(D_argmax_i, simd_set1_i16(i as i16), mask);
                        D_argmax_j = simd_blend_i8(D_argmax_j, simd_set1_i16(j as i16), mask);
                    }

                    simd_store(D_col.add(i) as _, D11);
                    simd_store(C_col.add(i) as _, C11);
                    i += L;
                }

                D_corner = simd_set1_i16(MIN);

                ptr::write(D_row.add(j), simd_extract_i16!(D11, L - 1));
                ptr::write(R_row.add(j), simd_extract_i16!(R11, L - 1));

                if !X_DROP && !FREE_QUERY_END_GAPS && start_i + height > $query.len()
                    && start_j + j >= $reference.len() {
                    if TRACE {
                        // make sure that the trace index is updated since the rest of the loop
                        // iterations are skipped
                        trace.add_trace_idx((width - 1 - j) * (height / L));
                    }
                    break;
                }
            }

            (D_max, D_argmax_i, D_argmax_j)
        }
    };
}

// increasing step size gives a bit extra speed but results in lower accuracy
// current settings are fast, at the expense of some accuracy, and step size does not grow
const STEP: usize = 8;
const X_DROP_ITER: usize = 2; // make sure that the X-drop iteration is truly met instead of just one "bad" step
const SHRINK: bool = true; // whether to allow the block size to shrink by powers of 2
const SHRINK_SUFFIX_LEN: usize = STEP / 4;
impl<const TRACE: bool, const X_DROP: bool, const LOCAL_START: bool, const FREE_QUERY_START_GAPS: bool, const FREE_QUERY_END_GAPS: bool> Block<{ TRACE }, { X_DROP }, { LOCAL_START }, { FREE_QUERY_START_GAPS }, { FREE_QUERY_END_GAPS }> {
    /// Allocate a block aligner instance with an upper bound query length,
    /// reference length, and max block size.
    ///
    /// A block aligner instance can be reused for multiple alignments as long
    /// as the aligned sequence lengths and block sizes do not exceed the specified
    /// upper bounds.
    pub fn new(query_len: usize, reference_len: usize, max_size: usize) -> Self {
        assert!(max_size.is_power_of_two(), "Block size must be a power of two!");

        Self {
            res: AlignResult { score: 0, query_idx: 0, reference_idx: 0 },
            allocated: Allocated::new(query_len, reference_len, max_size, TRACE, LOCAL_START, FREE_QUERY_START_GAPS)
        }
    }

    /// Align two sequences with block aligner.
    ///
    /// If `TRACE` is true, then information for computing the traceback will be stored.
    /// After alignment, the traceback CIGAR string can then be computed.
    /// This will slow down alignment and use a lot more memory.
    ///
    /// If `X_DROP` is true, then the alignment process will be terminated early when
    /// the max score in the current block drops by `x_drop` below the max score encountered
    /// so far. The location of the max score is stored in the alignment result.
    /// This allows the alignment to end anywhere in the DP matrix.
    /// If `X_DROP` is false, then global alignment is done.
    ///
    /// If `LOCAL_START` is true, then the alignment is allowed to start anywhere in the DP matrix.
    /// Local alignment can be accomplished by setting `LOCAL_START` and `X_DROP` to true and `x_drop`
    /// to a very large value.
    ///
    /// If `FREE_QUERY_START_GAPS` is true, then gaps before the start of the query are free.
    ///
    /// If `FREE_QUERY_END_GAPS` is true, then gaps after the end of the query are free.
    /// Note that this has a limitation: the min block size must be greater than the length of the query.
    ///
    /// Since larger scores are better, gap and mismatches penalties must be negative.
    ///
    /// The minimum and maximum sizes of the block must be powers of 2 that are greater than the
    /// number of 16-bit lanes in a SIMD vector.
    ///
    /// The block aligner algorithm will dynamically shift a block down or right and grow its size
    /// to efficiently calculate the alignment between two strings.
    /// This is fast, but it may be slightly less accurate than computing the entire the alignment
    /// dynamic programming matrix. Growing the size of the block allows larger gaps and
    /// other potentially difficult regions to be handled correctly.
    /// The algorithm also allows shrinking the block size for greater efficiency when handling
    /// regions in the sequences with no gaps.
    /// 16-bit deltas and 32-bit offsets are used to ensure that accurate scores are
    /// computed, even when the the strings are long.
    ///
    /// When aligning sequences `q` against `r`, this algorithm computes cells in the DP matrix
    /// with `|q| + 1` rows and `|r| + 1` columns.
    ///
    /// X-drop alignment with `ByteMatrix` is not supported.
    pub fn align<M: Matrix>(&mut self, query: &PaddedBytes, reference: &PaddedBytes, matrix: &M, gaps: Gaps, size: RangeInclusive<usize>, x_drop: i32) {
        // check invariants so bad stuff doesn't happen later
        assert!(gaps.open < 0 && gaps.extend < 0, "Gap costs must be negative!");
        // there are edge cases with calculating traceback that doesn't work if
        // gap open does not cost more than gap extend
        assert!(gaps.open < gaps.extend, "Gap open must cost more than gap extend!");
        let min_size = if *size.start() < L { L } else { *size.start() };
        let max_size = if *size.end() < L { L } else { *size.end() };
        assert!(min_size < (u16::MAX as usize) && max_size < (u16::MAX as usize), "Block sizes must be smaller than 2^16 - 1!");
        assert!(min_size.is_power_of_two() && max_size.is_power_of_two(), "Block sizes must be powers of two!");
        if X_DROP {
            assert!(x_drop >= 0, "X-drop threshold amount must be nonnegative!");
        }
        assert!(!LOCAL_START || !FREE_QUERY_START_GAPS, "Cannot set both LOCAL_START and FREE_QUERY_START_GAPS!");
        assert!(!X_DROP || !FREE_QUERY_END_GAPS, "Cannot set both X_DROP and FREE_QUERY_END_GAPS!");
        assert!(!FREE_QUERY_END_GAPS || min_size > query.len(), "Min block size must be larger than the query length for FREE_QUERY_END_GAPS!");

        unsafe { self.allocated.clear(query.len(), reference.len(), max_size, TRACE); }

        let s = State {
            query,
            i: 0,
            reference,
            j: 0,
            min_size,
            max_size,
            matrix,
            gaps,
            x_drop
        };
        unsafe { self.align_core(s); }
    }

    /// Align two sequences with exponential search on the min block size.
    ///
    /// This calls `align` multiple times, doubling the min block size in each iteration
    /// until either the max block size is reached or the score reaches or exceeds the target score.
    pub fn align_exp<M: Matrix>(&mut self, query: &PaddedBytes, reference: &PaddedBytes, matrix: &M, gaps: Gaps, size: RangeInclusive<usize>, x_drop: i32, target_score: i32) -> Option<usize> {
        let mut min_size = if *size.start() < L { L } else { *size.start() };
        let max_size = if *size.end() < L { L } else { *size.end() };
        assert!(min_size < (u16::MAX as usize) && max_size < (u16::MAX as usize), "Block sizes must be smaller than 2^16 - 1!");
        assert!(min_size.is_power_of_two() && max_size.is_power_of_two(), "Block sizes must be powers of two!");

        while min_size <= max_size {
            self.align(query, reference, matrix, gaps, min_size..=max_size, x_drop);
            let curr_score = self.res().score;

            if curr_score >= target_score {
                return Some(min_size);
            }

            min_size *= 2;
        }

        None
    }

    /// Align a sequence to a profile with block aligner.
    ///
    /// If `TRACE` is true, then information for computing the traceback will be stored.
    /// After alignment, the traceback CIGAR string can then be computed.
    /// This will slow down alignment and use a lot more memory.
    ///
    /// If `X_DROP` is true, then the alignment process will be terminated early when
    /// the max score in the current block drops by `x_drop` below the max score encountered
    /// so far. The location of the max score is stored in the alignment result.
    /// This allows the alignment to end anywhere in the DP matrix.
    /// If `X_DROP` is false, then global alignment is done.
    ///
    /// If `LOCAL_START` is true, then the alignment is allowed to start anywhere in the DP matrix.
    /// Local alignment can be accomplished by setting `LOCAL_START` and `X_DROP` to true and `x_drop`
    /// to a very large value.
    ///
    /// If `FREE_QUERY_START_GAPS` is true, then gaps before the start of the query are free.
    ///
    /// If `FREE_QUERY_END_GAPS` is true, then gaps after the end of the query are free.
    /// Note that this has a limitation: the min block size must be greater than the length of the query.
    ///
    /// Since larger scores are better, gap and mismatches penalties must be negative.
    ///
    /// The minimum and maximum sizes of the block must be powers of 2 that are greater than the
    /// number of 16-bit lanes in a SIMD vector.
    ///
    /// The block aligner algorithm will dynamically shift a block down or right and grow its size
    /// to efficiently calculate the alignment between two strings.
    /// This is fast, but it may be slightly less accurate than computing the entire the alignment
    /// dynamic programming matrix. Growing the size of the block allows larger gaps and
    /// other potentially difficult regions to be handled correctly.
    /// The algorithm also allows shrinking the block size for greater efficiency when handling
    /// regions in the sequences with no gaps.
    /// 16-bit deltas and 32-bit offsets are used to ensure that accurate scores are
    /// computed, even when the the strings are long.
    ///
    /// When aligning sequence `q` against profile `p`, this algorithm computes cells in the DP matrix
    /// with `|q| + 1` rows and `|p| + 1` columns.
    pub fn align_profile<P: Profile>(&mut self, query: &PaddedBytes, profile: &P, size: RangeInclusive<usize>, x_drop: i32) {
        // check invariants so bad stuff doesn't happen later
        assert!(profile.get_gap_extend() < 0, "Gap extend cost must be negative!");
        let min_size = if *size.start() < L { L } else { *size.start() };
        let max_size = if *size.end() < L { L } else { *size.end() };
        assert!(min_size < (u16::MAX as usize) && max_size < (u16::MAX as usize), "Block sizes must be smaller than 2^16 - 1!");
        assert!(min_size.is_power_of_two() && max_size.is_power_of_two(), "Block sizes must be powers of two!");
        if X_DROP {
            assert!(x_drop >= 0, "X-drop threshold amount must be nonnegative!");
        }
        assert!(!LOCAL_START || !FREE_QUERY_START_GAPS, "Cannot set both LOCAL_START and FREE_QUERY_START_GAPS!");
        assert!(!X_DROP || !FREE_QUERY_END_GAPS, "Cannot set both X_DROP and FREE_QUERY_END_GAPS!");
        assert!(!FREE_QUERY_END_GAPS || min_size > query.len(), "Min block size must be larger than the query length for FREE_QUERY_END_GAPS!");

        unsafe { self.allocated.clear(query.len(), profile.len(), max_size, TRACE); }

        let s = StateProfile {
            query,
            i: 0,
            reference: profile,
            j: 0,
            min_size,
            max_size,
            x_drop
        };
        unsafe { self.align_profile_core(s); }
    }

    /// Align a sequence to a profile with exponential search on the min block size.
    ///
    /// This calls `align_profile` multiple times, doubling the min block size in each iteration
    /// until either the max block size is reached or the score reaches or exceeds the target score.
    pub fn align_profile_exp<P: Profile>(&mut self, query: &PaddedBytes, profile: &P, size: RangeInclusive<usize>, x_drop: i32, target_score: i32) -> Option<usize> {
        let mut min_size = if *size.start() < L { L } else { *size.start() };
        let max_size = if *size.end() < L { L } else { *size.end() };
        assert!(min_size < (u16::MAX as usize) && max_size < (u16::MAX as usize), "Block sizes must be smaller than 2^16 - 1!");
        assert!(min_size.is_power_of_two() && max_size.is_power_of_two(), "Block sizes must be powers of two!");

        while min_size <= max_size {
            self.align_profile(query, profile, min_size..=max_size, x_drop);
            let curr_score = self.res().score;

            if curr_score >= target_score {
                return Some(min_size);
            }

            min_size *= 2;
        }

        None
    }

    align_core_gen!(align_core, Matrix, State, Self::place_block, Self::place_block);
    align_core_gen!(align_profile_core, Profile, StateProfile, Self::place_block_profile_right, Self::place_block_profile_down);

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[allow(non_snake_case)]
    #[inline]
    unsafe fn just_offset(block_size: usize, buf1: *mut i16, buf2: *mut i16, off_add: Simd) {
        let mut i = 0;
        while i < block_size {
            let a = simd_adds_i16(simd_load(buf1.add(i) as _), off_add);
            let b = simd_adds_i16(simd_load(buf2.add(i) as _), off_add);
            simd_store(buf1.add(i) as _, a);
            simd_store(buf2.add(i) as _, b);
            i += L;
        }
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[allow(non_snake_case)]
    #[inline]
    unsafe fn prefix_max(buf: *const i16) -> i16 {
        simd_prefix_hmax_i16!(simd_load(buf as _), STEP)
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[allow(non_snake_case)]
    #[inline]
    unsafe fn suffix_max(buf: *const i16, buf_len: usize) -> i16 {
        simd_suffix_hmax_i16!(simd_load(buf.add(buf_len - L) as _), SHRINK_SUFFIX_LEN)
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[allow(non_snake_case)]
    #[inline]
    unsafe fn shift_and_offset(block_size: usize, buf1: *mut i16, buf2: *mut i16, temp_buf1: *mut i16, temp_buf2: *mut i16, off_add: Simd) -> Simd {
        let mut curr1 = simd_adds_i16(simd_load(buf1 as _), off_add);
        let D_corner = simd_set1_i16(simd_extract_i16!(curr1, STEP - 1));
        let mut curr2 = simd_adds_i16(simd_load(buf2 as _), off_add);

        let mut i = 0;
        while i < block_size - L {
            let next1 = simd_adds_i16(simd_load(buf1.add(i + L) as _), off_add);
            let next2 = simd_adds_i16(simd_load(buf2.add(i + L) as _), off_add);
            simd_store(buf1.add(i) as _, simd_step(next1, curr1));
            simd_store(buf2.add(i) as _, simd_step(next2, curr2));
            curr1 = next1;
            curr2 = next2;
            i += L;
        }

        let next1 = simd_load(temp_buf1 as _);
        let next2 = simd_load(temp_buf2 as _);
        simd_store(buf1.add(block_size - L) as _, simd_step(next1, curr1));
        simd_store(buf2.add(block_size - L) as _, simd_step(next2, curr2));
        D_corner
    }

    /// Place block right or down for sequence-sequence alignment.
    ///
    /// Although conceptually blocks are squares, this function is actually used to compute any
    /// rectangular region. For example, when shifting a block right by some step
    /// size, only the rectangular region with width = step size needs to be computed, since
    /// the new shifted block will partially overlap with the previous block.
    ///
    /// Assumes all inputs are already relative to the current offset.
    ///
    /// Inside this function, everything will be treated as shifting right,
    /// conceptually. The same process can be trivially used for shifting
    /// down by calling this function with different parameters.
    ///
    /// The same function can be reused for right and down shifts because
    /// sequence to sequence alignment is symmetric.
    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[allow(non_snake_case)]
    unsafe fn place_block<M: Matrix>(state: &State<M>,
                                     query: &PaddedBytes,
                                     reference: &PaddedBytes,
                                     trace: &mut Trace,
                                     start_i: usize,
                                     start_j: usize,
                                     width: usize,
                                     height: usize,
                                     D_col: *mut i16,
                                     C_col: *mut i16,
                                     D_row: *mut i16,
                                     R_row: *mut i16,
                                     mut D_corner: Simd,
                                     relative_zero: i16,
                                     right: bool) -> (Simd, Simd, Simd) {
        let gap_open = simd_set1_i16(state.gaps.open as i16);
        let gap_extend = simd_set1_i16(state.gaps.extend as i16);
        let (gap_extend_all, prefix_scan_consts) = get_prefix_scan_consts(gap_extend);
        let mut D_max = simd_set1_i16(MIN);
        let mut D_argmax_i = simd_set1_i16(0);
        let mut D_argmax_j = simd_set1_i16(0);

        if width == 0 || height == 0 {
            return (D_max, D_argmax_i, D_argmax_j);
        }

        // hottest loop in the whole program
        for j in 0..width {
            let mut R01 = simd_set1_i16(MIN);
            let mut D11 = simd_set1_i16(MIN);
            let mut R11 = simd_set1_i16(MIN);
            let mut prev_trace_R = simd_set1_i16(0);

            let c = reference.get(start_j + j);

            let mut i = 0;
            while i < height {
                #[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), feature = "mca"))]
                asm!("# LLVM-MCA-BEGIN place_block inner loop", options(nomem, nostack, preserves_flags));

                let D10 = simd_load(D_col.add(i) as _);
                let C10 = simd_load(C_col.add(i) as _);
                let D00 = simd_sl_i16!(D10, D_corner, 1);
                D_corner = D10;

                let scores = state.matrix.get_scores(c, halfsimd_loadu(query.as_ptr(start_i + i) as _), right);
                D11 = simd_adds_i16(D00, scores);
                if (!LOCAL_START && start_i + i == 0 && start_j + j == 0) || (FREE_QUERY_START_GAPS && right && start_i + i == 0) {
                    D11 = simd_insert_i16!(D11, relative_zero, 0);
                }

                if LOCAL_START {
                    D11 = simd_max_i16(D11, simd_set1_i16(relative_zero));
                }

                let C11_open = simd_adds_i16(D10, gap_open);
                let C11 = simd_max_i16(simd_adds_i16(C10, gap_extend), C11_open);
                D11 = simd_max_i16(D11, C11);
                // at this point, C11 is fully calculated and D11 is partially calculated

                let D11_open = simd_adds_i16(D11, simd_subs_i16(gap_open, gap_extend));
                R11 = simd_prefix_scan_i16(D11_open, gap_extend, prefix_scan_consts);
                // do prefix scan before using R01 to break up dependency chain that depends on
                // the last element of R01 from the previous loop iteration
                R11 = simd_max_i16(R11, simd_adds_i16(simd_broadcasthi_i16(R01), gap_extend_all));
                // fully calculate D11 using R11
                D11 = simd_max_i16(D11, R11);
                R01 = R11;

                #[cfg(feature = "debug")]
                {
                    print!("s:   ");
                    simd_dbg_i16(scores);
                    print!("D00: ");
                    simd_dbg_i16(simd_subs_i16(D00, simd_set1_i16(ZERO)));
                    print!("C11: ");
                    simd_dbg_i16(simd_subs_i16(C11, simd_set1_i16(ZERO)));
                    print!("R11: ");
                    simd_dbg_i16(simd_subs_i16(R11, simd_set1_i16(ZERO)));
                    print!("D11: ");
                    simd_dbg_i16(simd_subs_i16(D11, simd_set1_i16(ZERO)));
                }

                if TRACE {
                    let trace_D_C = simd_cmpeq_i16(D11, C11);
                    let trace_D_R = simd_cmpeq_i16(D11, R11);
                    #[cfg(feature = "debug")]
                    {
                        print!("D_C: ");
                        simd_dbg_i16(trace_D_C);
                        print!("D_R: ");
                        simd_dbg_i16(trace_D_R);
                    }
                    // compress trace with movemask to save space
                    let mask = simd_set1_i16(0xFF00u16 as i16);
                    let trace_data = simd_movemask_i8(simd_blend_i8(trace_D_C, trace_D_R, mask));
                    let temp_trace_R = simd_cmpeq_i16(R11, D11_open);
                    let trace_R = simd_sl_i16!(temp_trace_R, prev_trace_R, 1);
                    let trace_data2 = simd_movemask_i8(simd_blend_i8(simd_cmpeq_i16(C11, C11_open), trace_R, mask));
                    prev_trace_R = temp_trace_R;

                    if LOCAL_START {
                        let zero_mask = simd_cmpeq_i16(D11, simd_set1_i16(relative_zero));
                        trace.add_zero_mask(simd_movemask_i8(zero_mask) as TraceType);
                    }

                    trace.add_trace(trace_data as TraceType, trace_data2 as TraceType);
                }

                D_max = simd_max_i16(D_max, D11);

                if X_DROP || (FREE_QUERY_END_GAPS && start_i + i + L > query.len()) {
                    // keep track of the best score and its location
                    // note: can assume right = true and only the last SIMD vectors are needed for FREE_QUERY_END_GAPS,
                    // due to the limitation that the min block size must be greater than query length
                    let mask = simd_cmpeq_i16(D_max, D11);
                    D_argmax_i = simd_blend_i8(D_argmax_i, simd_set1_i16(i as i16), mask);
                    D_argmax_j = simd_blend_i8(D_argmax_j, simd_set1_i16(j as i16), mask);
                }

                simd_store(D_col.add(i) as _, D11);
                simd_store(C_col.add(i) as _, C11);
                i += L;

                #[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), feature = "mca"))]
                asm!("# LLVM-MCA-END", options(nomem, nostack, preserves_flags));
            }

            D_corner = simd_set1_i16(MIN);

            ptr::write(D_row.add(j), simd_extract_i16!(D11, L - 1));
            ptr::write(R_row.add(j), simd_extract_i16!(R11, L - 1));

            if !X_DROP && !FREE_QUERY_END_GAPS && start_i + height > query.len()
                && start_j + j >= reference.len() {
                if TRACE {
                    // make sure that the trace index is updated since the rest of the loop
                    // iterations are skipped
                    trace.add_trace_idx((width - 1 - j) * (height / L));
                }
                break;
            }
        }

        (D_max, D_argmax_i, D_argmax_j)
    }

    place_block_profile_gen!(place_block_profile_right, query, &PaddedBytes, reference, &P, query, reference, true);
    place_block_profile_gen!(place_block_profile_down, reference, &P, query, &PaddedBytes, query, reference, false);

    /// Get the resulting score and ending location of the alignment.
    #[inline]
    pub fn res(&self) -> AlignResult {
        self.res
    }

    /// Get the trace of the alignment, assuming `TRACE` is true.
    #[inline]
    pub fn trace(&self) -> &Trace {
        assert!(TRACE);
        &self.allocated.trace
    }
}

/// Allocated scratch spaces for alignment.
///
/// Scratch spaces can be reused for aligning strings with shorter lengths
/// and smaller block sizes.
#[allow(non_snake_case)]
struct Allocated {
    pub trace: Trace,

    // bottom and right borders of the current block
    pub D_col: Aligned,
    pub C_col: Aligned,
    pub D_row: Aligned,
    pub R_row: Aligned,

    // the state at the previous checkpoint (where latest best score was encountered)
    pub D_col_ckpt: Aligned,
    pub C_col_ckpt: Aligned,
    pub D_row_ckpt: Aligned,
    pub R_row_ckpt: Aligned,

    // reused buffers for storing values that must be shifted
    // into the other border when the block moves in one direction
    pub temp_buf1: Aligned,
    pub temp_buf2: Aligned,

    query_len: usize,
    reference_len: usize,
    max_size: usize,
    trace_flag: bool
}

impl Allocated {
    #[allow(non_snake_case)]
    fn new(query_len: usize, reference_len: usize, max_size: usize, trace_flag: bool, local_start: bool, free_query_start_gaps: bool) -> Self {
        unsafe {
            let trace = if trace_flag {
                Trace::new(query_len, reference_len, max_size, local_start, free_query_start_gaps)
            } else {
                Trace::new(0, 0, 0, false, false)
            };
            let D_col = Aligned::new(max_size);
            let C_col = Aligned::new(max_size);
            let D_row = Aligned::new(max_size);
            let R_row = Aligned::new(max_size);
            let D_col_ckpt = Aligned::new(max_size);
            let C_col_ckpt = Aligned::new(max_size);
            let D_row_ckpt = Aligned::new(max_size);
            let R_row_ckpt = Aligned::new(max_size);
            let temp_buf1 = Aligned::new(L);
            let temp_buf2 = Aligned::new(L);

            Self {
                trace,
                D_col,
                C_col,
                D_row,
                R_row,
                D_col_ckpt,
                C_col_ckpt,
                D_row_ckpt,
                R_row_ckpt,
                temp_buf1,
                temp_buf2,
                query_len,
                reference_len,
                max_size,
                trace_flag
            }
        }
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    unsafe fn clear(&mut self, query_len: usize, reference_len: usize, max_size: usize, trace_flag: bool) {
        // do not overwrite query_len, reference_len, etc. because they are upper bounds
        assert!(query_len + reference_len <= self.query_len + self.reference_len);
        assert!(max_size <= self.max_size);
        assert_eq!(trace_flag, self.trace_flag);

        self.trace.clear(query_len, reference_len);
        self.D_col.clear(max_size);
        self.C_col.clear(max_size);
        self.D_row.clear(max_size);
        self.R_row.clear(max_size);
        self.D_col_ckpt.clear(max_size);
        self.C_col_ckpt.clear(max_size);
        self.D_row_ckpt.clear(max_size);
        self.R_row_ckpt.clear(max_size);
        self.temp_buf1.clear(L);
        self.temp_buf2.clear(L);
    }
}

/// Holds the trace generated by block aligner.
#[derive(Clone)]
pub struct Trace {
    trace: Vec<TraceType>,
    trace2: Vec<TraceType>,
    right: Vec<u64>,
    block_start: Vec<u32>,
    block_size: Vec<u16>,
    zero_mask: Vec<TraceType>,
    trace_idx: usize,
    block_idx: usize,
    ckpt_trace_idx: usize,
    ckpt_block_idx: usize,
    query_len: usize,
    reference_len: usize,
    local_start: bool,
    free_query_start_gaps: bool
}

impl Trace {
    #[inline]
    fn new(query_len: usize, reference_len: usize, max_size: usize, local_start: bool, free_query_start_gaps: bool) -> Self {
        let len = query_len + reference_len;
        let trace = vec![0 as TraceType; (max_size / L) * (len + max_size * 2)];
        let trace2 = vec![0 as TraceType; (max_size / L) * (len + max_size * 2)];
        let right = vec![0u64; div_ceil(len, 64)];
        let block_start = vec![0u32; len * 2];
        let block_size = vec![0u16; len * 2];
        let zero_mask = if local_start {
            vec![0 as TraceType; (max_size / L) * (len + max_size * 2)]
        } else {
            vec![]
        };

        Self {
            trace,
            trace2,
            right,
            block_start,
            block_size,
            zero_mask,
            trace_idx: 0,
            block_idx: 0,
            ckpt_trace_idx: 0,
            ckpt_block_idx: 0,
            query_len,
            reference_len,
            local_start,
            free_query_start_gaps,
        }
    }

    #[inline]
    fn clear(&mut self, query_len: usize, reference_len: usize) {
        // no need to clear trace, block_start, and block_size
        self.right.fill(0);
        self.trace_idx = 0;
        self.block_idx = 0;
        self.ckpt_trace_idx = 0;
        self.ckpt_block_idx = 0;
        self.query_len = query_len;
        self.reference_len = reference_len;
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[inline]
    unsafe fn add_trace(&mut self, t: TraceType, t2: TraceType) {
        debug_assert!(self.trace_idx < self.trace.len());
        store_trace(self.trace.as_mut_ptr().add(self.trace_idx), t);
        store_trace(self.trace2.as_mut_ptr().add(self.trace_idx), t2);
        self.trace_idx += 1;
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[inline]
    unsafe fn add_zero_mask(&mut self, mask: TraceType) {
        store_trace(self.zero_mask.as_mut_ptr().add(self.trace_idx), mask);
    }

    #[inline]
    fn add_block(&mut self, i: usize, j: usize, width: usize, height: usize, right: bool) {
        debug_assert!(self.block_idx * 2 < self.block_start.len());
        unsafe {
            *self.block_start.as_mut_ptr().add(self.block_idx * 2) = i as u32;
            *self.block_start.as_mut_ptr().add(self.block_idx * 2 + 1) = j as u32;
            *self.block_size.as_mut_ptr().add(self.block_idx * 2) = height as u16;
            *self.block_size.as_mut_ptr().add(self.block_idx * 2 + 1) = width as u16;

            let a = self.block_idx / 64;
            let b = self.block_idx % 64;
            let v = *self.right.as_ptr().add(a) & !(1 << b); // clear bit
            *self.right.as_mut_ptr().add(a) = v | ((right as u64) << b);

            self.block_idx += 1;
        }
    }

    #[inline]
    fn add_trace_idx(&mut self, add: usize) {
        self.trace_idx += add;
    }

    #[inline]
    fn save_ckpt(&mut self) {
        self.ckpt_trace_idx = self.trace_idx;
        self.ckpt_block_idx = self.block_idx;
    }

    /// The trace data structure is like a stack, so all trace values and blocks after the
    /// checkpoint is essentially popped off the stack.
    #[inline]
    fn restore_ckpt(&mut self) {
        self.trace_idx = self.ckpt_trace_idx;
        self.block_idx = self.ckpt_block_idx;
    }

    /// Create a CIGAR string that represents a single traceback path ending on the specified
    /// location.
    ///
    /// When aligning `q` against `r`, this represents the edits to go from `r` to `q`.
    /// Matches and mismatches are both represented with `M`.
    pub fn cigar(&self, i: usize, j: usize, cigar: &mut Cigar) {
        self.cigar_core::<false>(i, j, None, None, cigar);
    }

    /// Create a CIGAR string that represents a single traceback path ending on the specified
    /// location.
    ///
    /// When aligning `q` against `r`, this represents the edits to go from `r` to `q`.
    /// Matches are represented using `=` and mismatches are represented using `X`.
    pub fn cigar_eq(&self, query: &PaddedBytes, reference: &PaddedBytes, i: usize, j: usize, cigar: &mut Cigar) {
        self.cigar_core::<true>(i, j, Some(query), Some(reference), cigar);
    }

    fn cigar_core<const EQ: bool>(&self, mut i: usize, mut j: usize, q: Option<&PaddedBytes>, r: Option<&PaddedBytes>, cigar: &mut Cigar) {
        assert!(i <= self.query_len && j <= self.reference_len, "Traceback cigar end position must be in bounds!");
        if EQ {
            assert!(q.is_some() && r.is_some());
        }

        cigar.clear(i, j);

        unsafe {
            let mut block_idx = self.block_idx;
            let mut trace_idx = self.trace_idx;
            let mut block_i;
            let mut block_j;
            let mut block_width;
            let mut block_height;
            let mut right;

            #[derive(Copy, Clone, PartialEq, Debug)]
            enum Table {
                D = 0b00,
                C = 0b01,
                R = 0b10
            }

            // use lookup table instead of hard to predict branches
            // constructed at compile time!
            static OP_LUT: [[(Operation, usize, usize, Table); 64]; 2] = {
                let mut lut = [[(Operation::D, 0, 1, Table::D); 64]; 2];

                // table: the current DP table, D, C, or R (tables are standardized to right = true, C and R would be swapped for right = false)
                // trace: 2 bits, first bit is whether the max equals C table entry, second bit is
                // whether the max equals R table entry (vice versa for right = false)
                // trace2: 2 bits, first bit is whether the max in the C table is the gap beginning, second
                // bit is whether the max in the R table is the gap beginning (vice versa for right = false)
                // right: whether the current block contains vectors laid out vertically

                let mut right = 0;
                while right < 2 {
                    let mut trace = 0;
                    while trace < 4 {
                        let mut trace2 = 0;
                        while trace2 < 4 {
                            let mut table_idx = 0;
                            while table_idx < 3 {
                                let table = match table_idx {
                                    0b00 => Table::D,
                                    0b01 => Table::C,
                                    _ => Table::R
                                };

                                let res = if right == 1 {
                                    match (trace, trace2, table) {
                                        (_, 0b00 | 0b10, Table::C) => (Operation::D, 0, 1, Table::C), // C table gap extend
                                        (_, 0b01 | 0b11, Table::C) => (Operation::D, 0, 1, Table::D), // C table gap open
                                        (_, 0b00 | 0b01, Table::R) => (Operation::I, 1, 0, Table::R), // R table gap extend
                                        (_, 0b10 | 0b11, Table::R) => (Operation::I, 1, 0, Table::D), // R table gap open
                                        (0b00, _, Table::D) => (Operation::M, 1, 1, Table::D), // D table match/mismatch
                                        (0b01 | 0b11, 0b00 | 0b10, Table::D) => (Operation::D, 0, 1, Table::C), // D table C gap extend
                                        (0b01 | 0b11, 0b01 | 0b11, Table::D) => (Operation::D, 0, 1, Table::D), // D table C gap open
                                        (0b10, 0b00 | 0b01, Table::D) => (Operation::I, 1, 0, Table::R), // D table R gap extend
                                        (0b10, 0b10 | 0b11, Table::D) => (Operation::I, 1, 0, Table::D), // D table R gap open
                                        _ => (Operation::D, 0, 1, Table::D)
                                    }
                                } else {
                                    // everything is basically swapped (C/R and I/D) for down (right = false)
                                    match (trace, trace2, table) {
                                        (_, 0b00 | 0b10, Table::R) => (Operation::I, 1, 0, Table::R), // R table gap extend
                                        (_, 0b01 | 0b11, Table::R) => (Operation::I, 1, 0, Table::D), // R table gap open
                                        (_, 0b00 | 0b01, Table::C) => (Operation::D, 0, 1, Table::C), // C table gap extend
                                        (_, 0b10 | 0b11, Table::C) => (Operation::D, 0, 1, Table::D), // C table gap open
                                        (0b00, _, Table::D) => (Operation::M, 1, 1, Table::D), // D table match/mismatch
                                        (0b01 | 0b11, 0b00 | 0b10, Table::D) => (Operation::I, 1, 0, Table::R), // D table R gap extend
                                        (0b01 | 0b11, 0b01 | 0b11, Table::D) => (Operation::I, 1, 0, Table::D), // D table R gap open
                                        (0b10, 0b00 | 0b01, Table::D) => (Operation::D, 0, 1, Table::C), // D table C gap extend
                                        (0b10, 0b10 | 0b11, Table::D) => (Operation::D, 0, 1, Table::D), // D table C gap open
                                        _ => (Operation::I, 1, 0, Table::D)
                                    }
                                };

                                lut[right][(trace << 4) | (trace2 << 2) | (table as usize)] = res;
                                table_idx += 1;
                            }
                            trace2 += 1;
                        }
                        trace += 1;
                    }
                    right += 1;
                }

                lut
            };

            let mut table = Table::D;

            'outer: while i > 0 || j > 0 {
                // find the current block that contains (i, j)
                loop {
                    block_idx -= 1;
                    block_i = *self.block_start.as_ptr().add(block_idx * 2) as usize;
                    block_j = *self.block_start.as_ptr().add(block_idx * 2 + 1) as usize;
                    block_height = *self.block_size.as_ptr().add(block_idx * 2) as usize;
                    block_width = *self.block_size.as_ptr().add(block_idx * 2 + 1) as usize;
                    trace_idx -= block_width * block_height / L;

                    if i >= block_i && j >= block_j {
                        right = ((*self.right.as_ptr().add(block_idx / 64) >> (block_idx % 64)) & 0b1) as usize;
                        break;
                    }
                }

                // compute traceback within the current block
                let lut = &*OP_LUT.as_ptr().add(right);
                if right > 0 {
                    // right block
                    while i >= block_i && j >= block_j && (i > 0 || j > 0) {
                        if self.free_query_start_gaps && i == 0 {
                            // can do this because the row (i == 0) must be within right blocks
                            break 'outer;
                        }

                        let curr_i = i - block_i;
                        let curr_j = j - block_j;
                        let idx = trace_idx + curr_i / L + curr_j * (block_height / L);

                        if self.local_start && table == Table::D {
                            // terminate alignment on zero
                            let zero = ((*self.zero_mask.as_ptr().add(idx) >> ((curr_i % L) * 2)) & 0b1) > 0;
                            if zero {
                                break 'outer;
                            }
                        }

                        // build the index into the lookup table
                        let t = ((*self.trace.as_ptr().add(idx) >> ((curr_i % L) * 2)) & 0b11) as usize;
                        let t2 = ((*self.trace2.as_ptr().add(idx) >> ((curr_i % L) * 2)) & 0b11) as usize;
                        let lut_idx = (t << 4) | (t2 << 2) | (table as usize);
                        let lut_entry = &*lut.as_ptr().add(lut_idx);

                        let op = if EQ && lut_entry.0 == Operation::M {
                            if q.unwrap_unchecked().get(i) == r.unwrap_unchecked().get(j) {
                                Operation::Eq
                            } else {
                                Operation::X
                            }
                        } else {
                            lut_entry.0
                        };
                        i -= lut_entry.1;
                        j -= lut_entry.2;
                        table = lut_entry.3;
                        cigar.add(op);
                    }
                } else {
                    // down block
                    while i >= block_i && j >= block_j && (i > 0 || j > 0) {
                        let curr_i = i - block_i;
                        let curr_j = j - block_j;
                        let idx = trace_idx + curr_j / L + curr_i * (block_width / L);

                        if self.local_start && table == Table::D {
                            // terminate alignment on zero
                            let zero = ((*self.zero_mask.as_ptr().add(idx) >> ((curr_j % L) * 2)) & 0b1) > 0;
                            if zero {
                                break 'outer;
                            }
                        }

                        // build the index into the lookup table
                        let t = ((*self.trace.as_ptr().add(idx) >> ((curr_j % L) * 2)) & 0b11) as usize;
                        let t2 = ((*self.trace2.as_ptr().add(idx) >> ((curr_j % L) * 2)) & 0b11) as usize;
                        let lut_idx = (t << 4) | (t2 << 2) | (table as usize);
                        let lut_entry = &*lut.as_ptr().add(lut_idx);

                        let op = if EQ && lut_entry.0 == Operation::M {
                            if q.unwrap_unchecked().get(i) == r.unwrap_unchecked().get(j) {
                                Operation::Eq
                            } else {
                                Operation::X
                            }
                        } else {
                            lut_entry.0
                        };
                        i -= lut_entry.1;
                        j -= lut_entry.2;
                        table = lut_entry.3;
                        cigar.add(op);
                    }
                }
            }
        }
    }

    /// Return all of the rectangular regions that were calculated separately as
    /// block aligner shifts and grows.
    pub fn blocks(&self) -> Vec<Rectangle> {
        let mut res = Vec::with_capacity(self.block_idx);

        for i in 0..self.block_idx {
            unsafe {
                res.push(Rectangle {
                    row: *self.block_start.as_ptr().add(i * 2) as usize,
                    col: *self.block_start.as_ptr().add(i * 2 + 1) as usize,
                    height: *self.block_size.as_ptr().add(i * 2) as usize,
                    width: *self.block_size.as_ptr().add(i * 2 + 1) as usize
                });
            }
        }

        res
    }
}

/// A rectangular region.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct Rectangle {
    pub row: usize,
    pub col: usize,
    pub width: usize,
    pub height: usize
}

#[inline]
fn clamp(x: i32) -> i16 {
    cmp::min(cmp::max(x, i16::MIN as i32), i16::MAX as i32) as i16
}

#[inline]
fn div_ceil(n: usize, d: usize) -> usize {
    (n + d - 1) / d
}

/// Same alignment as SIMD vectors.
struct Aligned {
    layout: alloc::Layout,
    ptr: *const i16
}

impl Aligned {
    pub unsafe fn new(block_size: usize) -> Self {
        // custom alignment
        let layout = alloc::Layout::from_size_align_unchecked(block_size * 2, L_BYTES);
        let ptr = alloc::alloc_zeroed(layout) as *const i16;
        Self { layout, ptr }
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    pub unsafe fn clear(&mut self, block_size: usize) {
        let mut i = 0;
        while i < block_size {
            simd_store(self.ptr.add(i) as _, simd_set1_i16(MIN));
            i += L;
        }
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[inline]
    pub unsafe fn set_vec(&mut self, o: &Aligned, idx: usize) {
        simd_store(self.ptr.add(idx) as _, simd_load(o.as_ptr().add(idx) as _));
    }

    #[cfg_attr(feature = "simd_sse2", target_feature(enable = "sse2"))]
    #[cfg_attr(feature = "simd_avx2", target_feature(enable = "avx2"))]
    #[cfg_attr(feature = "simd_wasm", target_feature(enable = "simd128"))]
    #[cfg_attr(feature = "simd_neon", target_feature(enable = "neon"))]
    #[inline]
    pub unsafe fn copy_vec(&mut self, new_idx: usize, idx: usize) {
        simd_store(self.ptr.add(new_idx) as _, simd_load(self.ptr.add(idx) as _));
    }

    #[inline]
    pub fn get(&self, i: usize) -> i16 {
        unsafe { *self.ptr.add(i) }
    }

    #[allow(dead_code)]
    #[inline]
    pub fn set(&mut self, i: usize, v: i16) {
        unsafe { ptr::write(self.ptr.add(i) as _, v); }
    }

    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut i16 {
        self.ptr as _
    }

    #[inline]
    pub fn as_ptr(&self) -> *const i16 {
        self.ptr
    }
}

impl Drop for Aligned {
    fn drop(&mut self) {
        unsafe { alloc::dealloc(self.ptr as _, self.layout); }
    }
}

/// A padded string that helps avoid out of bounds access when using SIMD.
///
/// A single padding byte in inserted before the start of the string,
/// and `block_size` bytes are inserted after the end of the string.
#[derive(Clone, PartialEq, Debug)]
pub struct PaddedBytes {
    s: Vec<u8>,
    len: usize
}

impl PaddedBytes {
    /// Create an empty `PaddedBytes` instance that can hold byte strings
    /// of a specific size.
    pub fn new<M: Matrix>(len: usize, block_size: usize) -> Self {
        Self {
            s: vec![M::convert_char(M::NULL); 1 + len + block_size],
            len
        }
    }

    /// Modifies the bytes in place, filling in the rest of the memory with padding bytes.
    pub fn set_bytes<M: Matrix>(&mut self, b: &[u8], block_size: usize) {
        self.s[0] = M::convert_char(M::NULL);
        self.s[1..1 + b.len()].copy_from_slice(b);
        self.s[1..1 + b.len()].iter_mut().for_each(|c| *c = M::convert_char(*c));
        self.s[1 + b.len()..1 + b.len() + block_size].fill(M::convert_char(M::NULL));
        self.len = b.len();
    }

    /// Modifies the bytes in place in reverse, filling in the rest of the memory with padding bytes.
    pub fn set_bytes_rev<M: Matrix>(&mut self, b: &[u8], block_size: usize) {
        self.s[0] = M::convert_char(M::NULL);
        self.s[1..1 + b.len()].copy_from_slice(b);
        self.s[1..1 + b.len()].reverse();
        self.s[1..1 + b.len()].iter_mut().for_each(|c| *c = M::convert_char(*c));
        self.s[1 + b.len()..1 + b.len() + block_size].fill(M::convert_char(M::NULL));
        self.len = b.len();
    }

    /// Create from a byte slice.
    ///
    /// Make sure that `block_size` is greater than or equal to the upper bound
    /// block size used in the `Block::align` function.
    #[inline]
    pub fn from_bytes<M: Matrix>(b: &[u8], block_size: usize) -> Self {
        let mut v = b.to_owned();
        let len = v.len();
        v.insert(0, M::NULL);
        v.resize(v.len() + block_size, M::NULL);
        v.iter_mut().for_each(|c| *c = M::convert_char(*c));
        Self { s: v, len }
    }

    /// Create from the bytes in a string slice.
    ///
    /// Make sure that `block_size` is greater than or equal to the upper bound
    /// block size used in the `Block::align` function.
    #[inline]
    pub fn from_str<M: Matrix>(s: &str, block_size: usize) -> Self {
        Self::from_bytes::<M>(s.as_bytes(), block_size)
    }

    /// Create from the bytes in a string.
    ///
    /// Make sure that `block_size` is greater than or equal to the upper bound
    /// block size used in the `Block::align` function.
    #[inline]
    pub fn from_string<M: Matrix>(s: String, block_size: usize) -> Self {
        let mut v = s.into_bytes();
        let len = v.len();
        v.insert(0, M::NULL);
        v.resize(v.len() + block_size, M::NULL);
        v.iter_mut().for_each(|c| *c = M::convert_char(*c));
        Self { s: v, len }
    }

    /// Get the byte at a certain index (unchecked).
    #[inline]
    pub unsafe fn get(&self, i: usize) -> u8 {
        *self.s.as_ptr().add(i)
    }

    /// Set the byte at a certain index (unchecked).
    #[inline]
    pub unsafe fn set(&mut self, i: usize, c: u8) {
        *self.s.as_mut_ptr().add(i) = c;
    }

    /// Create a pointer to a specific index.
    #[inline]
    pub unsafe fn as_ptr(&self, i: usize) -> *const u8 {
        self.s.as_ptr().add(i)
    }

    /// Length of the original string (no padding).
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }
}

/// Resulting score and alignment end position.
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct AlignResult {
    pub score: i32,
    pub query_idx: usize,
    pub reference_idx: usize
}

#[derive(Copy, Clone, PartialEq, Debug)]
enum Direction {
    Right,
    Down,
    Grow
}

#[cfg(test)]
mod tests {
    use crate::scores::*;

    use super::*;

    #[test]
    fn test_no_x_drop() {
        let test_gaps = Gaps { open: -11, extend: -1 };

        let mut a = Block::<false, false>::new(100, 100, 16);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AARA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 11);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAAAAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AARAAAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 12);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 16);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AARA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 11);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"RRRR", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, -4);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 1);

        let test_gaps2 = Gaps { open: -2, extend: -1 };

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAN", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"ATAA", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, 0);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, 32);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, -32);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"TATATATATATATATATATATATATATATATA", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, 0);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"TTAAAAAAATTTTTTTTTTTT", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"TTTTTTTTAAAAAAATTTTTTTTT", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, 7);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"C", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, -5);
        a.align(&r, &q, &NW1, test_gaps2, 16..=16, 0);
        assert_eq!(a.res().score, -5);
    }

    #[test]
    fn test_x_drop() {
        let test_gaps = Gaps { open: -11, extend: -1 };

        let mut a = Block::<false, true>::new(100, 100, 16);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAARRA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAAAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 1);
        assert_eq!(a.res(), AlignResult { score: 14, query_idx: 6, reference_idx: 6 });

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAAAAAAAAAAAAARRRRRRRRRRRRRRRRAAAAAAAAAAAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 1);
        assert_eq!(a.res(), AlignResult { score: 60, query_idx: 15, reference_idx: 15 });

        let mut a = Block::<true, true>::new(2048, 2048, 2048);
        let long_str = std::iter::repeat(b'A').take(2048).collect::<Vec<_>>();
        let r = PaddedBytes::from_bytes::<AAMatrix>(&long_str, 2048);
        let q = PaddedBytes::from_bytes::<AAMatrix>(&long_str, 2048);
        a.align(&q, &r, &BLOSUM62, test_gaps, 2048..=2048, 100);
        assert_eq!(a.res(), AlignResult { score: 8192, query_idx: 2048, reference_idx: 2048 });
    }

    #[test]
    fn test_trace() {
        let test_gaps = Gaps { open: -11, extend: -1 };

        let mut cigar = Cigar::new(100, 100);

        let mut a = Block::<true, false>::new(100, 100, 16);

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAARRA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAAAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 14, query_idx: 6, reference_idx: 6 });
        a.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "3=2X1=");

        let r = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAA", 16);
        a.align(&q, &r, &BLOSUM62, test_gaps, 16..=16, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 1, query_idx: 3, reference_idx: 4 });
        a.trace().cigar(res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "3M1D");

        let test_gaps2 = Gaps { open: -2, extend: -1 };

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"TTAAAAAAATTTTTTTTTTTT", 16);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"TTTTTTTTAAAAAAATTTTTTTTT", 16);
        a.align(&q, &r, &NW1, test_gaps2, 16..=16, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 7, query_idx: 24, reference_idx: 21 });
        a.trace().cigar(res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "2M6I16M3D");

        let mut a = Block::<true, false>::new(100, 100, 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAAAAATTGCGCT", 32);
        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAAAAAGCGC", 32);

        a.align(&q, &r, &NW1, test_gaps2, 32..=32, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 8, query_idx: 16, reference_idx: 13 });
        a.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "9=2I4=1I");

        let matrix = NucMatrix::new_simple(2, -1);
        let test_gaps3 = Gaps { open: -5, extend: -2 };
        a.align(&q, &r, &matrix, test_gaps3, 32..=32, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 14, query_idx: 16, reference_idx: 13 });
        a.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "9=2I4=1I");
    }

    #[test]
    fn test_bytes() {
        let test_gaps = Gaps { open: -2, extend: -1 };

        let mut a = Block::<false, false>::new(100, 100, 16);

        let r = PaddedBytes::from_bytes::<ByteMatrix>(b"AAAaaA", 16);
        let q = PaddedBytes::from_bytes::<ByteMatrix>(b"AAAAAA", 16);
        a.align(&q, &r, &BYTES1, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 2);

        let r = PaddedBytes::from_bytes::<ByteMatrix>(b"abcdefg", 16);
        let q = PaddedBytes::from_bytes::<ByteMatrix>(b"abdefg", 16);
        a.align(&q, &r, &BYTES1, test_gaps, 16..=16, 0);
        assert_eq!(a.res().score, 4);
    }

    #[test]
    fn test_profile() {
        let mut a = Block::<false, false>::new(100, 100, 16);
        let r = AAProfile::from_bytes(b"AAAA", 16, 1, -1, -1, 0, -1, -1);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        a.align_profile(&q, &r, 16..=16, 0);
        assert_eq!(a.res().score, 4);

        let r = AAProfile::from_bytes(b"AATTAA", 16, 1, -1, -1, 0, -1, -1);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        a.align_profile(&q, &r, 16..=16, 0);
        assert_eq!(a.res().score, 1);

        let r = AAProfile::from_bytes(b"AATTAA", 16, 1, -1, -1, -1, -1, -1);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"AAAA", 16);
        a.align_profile(&q, &r, 16..=16, 0);
        assert_eq!(a.res().score, 0);

        let mut a = Block::<true, false>::new(100, 100, 16);
        let mut cigar = Cigar::new(100, 100);

        let r = AAProfile::from_bytes(b"TTAAAAAAATTTTTTTTTTTT", 16, 1, -1, -1, 0, -1, -1);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"TTTTTTTTAAAAAAATTTTTTTTT", 16);
        a.align_profile(&q, &r, 16..=16, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 7, query_idx: 24, reference_idx: 21 });
        a.trace().cigar(res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "2M6I16M3D");

        let r = AAProfile::from_bytes(b"TTAAAAAAATTTTTTTTTTTT", 16, 1, -1, -1, -1, -1, -1);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"TTTTTTTTAAAAAAATTTTTTTTT", 16);
        a.align_profile(&q, &r, 16..=16, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 6, query_idx: 24, reference_idx: 21 });
        a.trace().cigar(res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "2M6I16M3D");

        let mut r = AAProfile::from_bytes(b"TTAAAAAAATTTTTTTTTTTT", 16, 1, -1, -2, -1, -1, -1);
        r.set_gap_close_C(17, -1);
        r.set_gap_close_C(19, 0);
        let q = PaddedBytes::from_bytes::<AAMatrix>(b"TTTTTTTTAAAAAAATTTTTTTTT", 16);
        a.align_profile(&q, &r, 16..=16, 0);
        let res = a.res();
        assert_eq!(res, AlignResult { score: 6, query_idx: 24, reference_idx: 21 });
        a.trace().cigar(res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "2M6I14M3D2M");
    }

    #[test]
    fn test_local_and_free_query_gaps() {
        let test_gaps = Gaps { open: -2, extend: -1 };

        let mut local = Block::<true, false, true, false>::new(100, 100, 32);
        let mut cigar = Cigar::new(100, 100);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"TTTTAAAAAA", 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"CCCCCCCCCCAAAAAA", 32);
        local.align(&q, &r, &NW1, test_gaps, 32..=32, 0);
        let res = local.res();
        assert_eq!(res, AlignResult { score: 6, query_idx: 16, reference_idx: 10 });
        local.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "6=");

        let mut local = Block::<true, true, true, false>::new(100, 100, 32);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"TTTTAAAAAATTTTTTT", 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"CCCCCCCCCCAAAAAACCCCCCCCCCCC", 32);
        local.align(&q, &r, &NW1, test_gaps, 32..=32, 100);
        let res = local.res();
        assert_eq!(res, AlignResult { score: 6, query_idx: 16, reference_idx: 10 });
        local.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "6=");

        let mut q_start = Block::<true, false, false, true>::new(100, 100, 32);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"CCCCCCCCCCAAAAAA", 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAA", 32);
        q_start.align(&q, &r, &NW1, test_gaps, 32..=32, 0);
        let res = q_start.res();
        assert_eq!(res, AlignResult { score: 6, query_idx: 6, reference_idx: 16 });
        q_start.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "6=");

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"CCCCCCCCCCAAATAA", 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAA", 32);
        q_start.align(&q, &r, &NW1, test_gaps, 32..=32, 0);
        let res = q_start.res();
        assert_eq!(res, AlignResult { score: 4, query_idx: 6, reference_idx: 16 });
        q_start.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "3=1X2=");

        let mut q_end = Block::<true, false, false, false, true>::new(100, 100, 32);

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAACCCCCCCCCC", 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAA", 32);
        q_end.align(&q, &r, &NW1, test_gaps, 32..=32, 0);
        let res = q_end.res();
        assert_eq!(res, AlignResult { score: 6, query_idx: 6, reference_idx: 6 });
        q_end.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "6=");

        let r = PaddedBytes::from_bytes::<NucMatrix>(b"AAATAACCCCCCCCCC", 32);
        let q = PaddedBytes::from_bytes::<NucMatrix>(b"AAAAAA", 32);
        q_end.align(&q, &r, &NW1, test_gaps, 32..=32, 0);
        let res = q_end.res();
        assert_eq!(res, AlignResult { score: 4, query_idx: 6, reference_idx: 6 });
        q_end.trace().cigar_eq(&q, &r, res.query_idx, res.reference_idx, &mut cigar);
        assert_eq!(cigar.to_string(), "3=1X2=");
    }
}