1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//! Blender files can have meshes such as circles, cubes, cylinders, a dragon or any other
//! 3D shape.
//!
//! A mesh can be represented as a group of vertices and data about those vertices, such as their
//! normals or UV coordinates.
//!
//! Meshes can also have metadata, such as the name of it's parent armature (useful for vertex
//! skinning).
//!
//! blender-mesh-to-json seeks to be a well tested, well documented exporter for blender mesh
//! metadata.
//!
//! You can write data to stdout or to a file. At the onset it will be geared towards @chinedufn's
//! needs - but if you have needs that aren't met feel very free to open an issue.
//!
//! @see https://docs.blender.org/manual/en/dev/modeling/meshes/introduction.html - Mesh Introduction
//! @see https://github.com/chinedufn/blender-actions-to-json - Exporting blender armatures / actions

#[deny(missing_docs)]
#[macro_use]
extern crate failure;
#[macro_use]
extern crate serde_derive;

pub use self::export::*;
use crate::bounding_box::BoundingBox;
use serde_json;
use serde_json::Error;

mod bounding_box;
mod combine_indices;
mod export;
mod y_up;

/// Something went wrong in the Blender child process that was trying to parse your mesh data.
#[derive(Debug, Fail)]
pub enum BlenderError {
    /// Errors in Blender are written to stderr. We capture the stderr from the `blender` child
    /// process that we spawned when attempting to export meshes from a `.blend` file.
    #[fail(
        display = "There was an issue while exporting meshes: Blender stderr output: {}",
        _0
    )]
    Stderr(String),
}

/// All of the data about a Blender mesh
#[derive(Debug, Serialize, Deserialize, PartialEq)]
#[cfg_attr(test, derive(Default))]
#[serde(deny_unknown_fields)]
pub struct BlenderMesh {
    /// All of the mesh's vertices. Three items in the vector make one vertex.
    /// So indices 0, 1 and 2 are a vertex, 3, 4 and 5 are a vertex.. etc.
    /// [v1x, v1y, v1z, v2x, v2y, v2z, ...]
    pub vertex_positions: Vec<f32>,
    /// The indices within vertex positions that make up each triangle in our mesh.
    /// Three vertex position indices correspond to one triangle
    /// [0, 1, 2, 0, 2, 3, ...]
    pub vertex_position_indices: Vec<u16>,
    /// TODO: enum..? if they're all equal we replace the MyEnum::PerVertex(Vec<u8>) with MyEnum::Equal(4)
    pub num_vertices_in_each_face: Vec<u8>,
    pub vertex_normals: Vec<f32>,
    pub vertex_normal_indices: Option<Vec<u16>>,
    /// If your mesh is textured these will be all of the mesh's vertices' uv coordinates.
    /// Every vertex has two UV coordinates.
    /// [v1s, v1t, v2s, v2t, v3s, v3t]
    /// TODO: Combine vertex_uvs, vertex_uv_indices, texture_name into texture_info
    pub vertex_uvs: Option<Vec<f32>>,
    pub vertex_uv_indices: Option<Vec<u16>>,
    pub texture_name: Option<String>,
    pub armature_name: Option<String>,
    /// TODO: When we move to single index triangulate and add new vertices give those vertices the same group indices / weights
    /// TODO: A function that trims this down to `n` weights and indices per vertex. Similar to our
    /// triangulate function
    /// TODO: Make sure that when we combine vertex indices we expand our group weights
    pub vertex_group_indices: Option<Vec<u8>>,
    pub vertex_group_weights: Option<Vec<f32>>,
    /// TODO: enum..? if they're all equal we replace the MyEnum::PerVertex(Vec<u8>) with MyEnum::Equal(4)
    pub num_groups_for_each_vertex: Option<Vec<u8>>, // TODO: textures: HashMap<TextureNameString, {uvs, uv_indices}>,
    pub bounding_box: BoundingBox,
}

impl BlenderMesh {
    // TODO: Delete this.. let the consumer worry about serializing / deserializing
    pub fn from_json(json_str: &str) -> Result<BlenderMesh, Error> {
        serde_json::from_str(json_str)
    }
}

impl BlenderMesh {
    /// When exporting a mesh from Blender, faces will usually have 4 vertices (quad) but some
    /// faces might have 3 (triangle).
    ///
    /// We read `self.num_vertices_in_each_face` to check how
    /// many vertices each face has.
    ///
    /// If a face has 4 vertices we convert it into two triangles, each with 3 vertices.
    ///
    /// # Panics
    ///
    /// Panics if a face has more than 4 vertices. In the future we might support 5+ vertices,
    /// but I haven't run into that yet. Not even sure if Blender can have faces with 5 vertices..
    pub fn triangulate(&mut self) {
        let mut triangulated_position_indices = vec![];
        let mut triangulated_face_vertex_counts = vec![];

        let mut face_pointer = 0;

        for num_verts_in_face in self.num_vertices_in_each_face.iter() {
            match num_verts_in_face {
                &3 => {
                    triangulated_face_vertex_counts.push(3);

                    triangulated_position_indices.push(self.vertex_position_indices[face_pointer]);
                    triangulated_position_indices
                        .push(self.vertex_position_indices[face_pointer + 1]);
                    triangulated_position_indices
                        .push(self.vertex_position_indices[face_pointer + 2]);

                    face_pointer += 3;
                }
                &4 => {
                    triangulated_face_vertex_counts.push(3);
                    triangulated_face_vertex_counts.push(3);

                    triangulated_position_indices.push(self.vertex_position_indices[face_pointer]);
                    triangulated_position_indices
                        .push(self.vertex_position_indices[face_pointer + 1]);
                    triangulated_position_indices
                        .push(self.vertex_position_indices[face_pointer + 2]);
                    triangulated_position_indices.push(self.vertex_position_indices[face_pointer]);
                    triangulated_position_indices
                        .push(self.vertex_position_indices[face_pointer + 2]);
                    triangulated_position_indices
                        .push(self.vertex_position_indices[face_pointer + 3]);

                    face_pointer += 4;
                }
                _ => {
                    panic!("blender-mesh currently only supports triangulating faces with 3 or 4 vertices");
                }
            }
        }

        self.vertex_position_indices = triangulated_position_indices;
        self.num_vertices_in_each_face = triangulated_face_vertex_counts;
    }
}

impl BlenderMesh {
    /// Different vertices might have different numbers of bones that influence them.
    /// A vertex near the shoulder might be influenced by the neck and upper arm and sternum,
    /// while a vertex in a toe might only be influenced by a toe bone.
    ///
    /// When passing data to the GPU, each vertex needs the same number of bone attributes, so
    /// we must add/remove bones from each vertex to get them equal.
    ///
    /// Say we're setting 3 groups per vertex:
    ///  - If a vertex has one vertex group (bone) we will create two fake bones with 0.0 weight.
    ///  - If a vertex has 5 bones we'll remove the one with the smallest weighting (influence).
    pub fn set_groups_per_vertex(&mut self, count: u8) {
        let mut normalized_group_indices = vec![];
        let mut normalized_group_weights = vec![];

        let mut current_index: u32 = 0;

        {
            let indices = self.vertex_group_indices.as_mut().unwrap();
            let weights = self.vertex_group_weights.as_mut().unwrap();

            self.num_groups_for_each_vertex = Some(
                self.num_groups_for_each_vertex
                    .as_ref()
                    .unwrap()
                    .iter()
                    .map(|group_count| {
                        let mut vertex_indices = vec![];
                        let mut vertex_weights = vec![];

                        for index in current_index..(current_index + *group_count as u32) {
                            vertex_indices.push(index);
                            vertex_weights.push(weights[index as usize]);
                        }

                        vertex_weights.sort_by(|a, b| b.partial_cmp(a).unwrap());
                        vertex_indices.sort_by(|a, b| {
                            weights[*b as usize]
                                .partial_cmp(&weights[*a as usize])
                                .unwrap()
                        });

                        let mut vertex_indices: Vec<u8> = vertex_indices
                            .iter()
                            .map(|i| indices[*i as usize])
                            .collect();

                        vertex_indices.resize(count as usize, 0);
                        vertex_weights.resize(count as usize, 0.0);

                        normalized_group_indices.append(&mut vertex_indices);
                        normalized_group_weights.append(&mut vertex_weights);

                        current_index += *group_count as u32;
                        count
                    })
                    .collect(),
            );
        }

        self.vertex_group_indices = Some(normalized_group_indices);
        self.vertex_group_weights = Some(normalized_group_weights);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn triangulate_faces() {
        let mut start_mesh = BlenderMesh {
            vertex_position_indices: vec![0, 1, 2, 3, 4, 5, 6, 7],
            num_vertices_in_each_face: vec![4, 4],
            ..BlenderMesh::default()
        };

        start_mesh.triangulate();
        let triangulated_mesh = start_mesh;

        let expected_mesh = BlenderMesh {
            vertex_position_indices: vec![0, 1, 2, 0, 2, 3, 4, 5, 6, 4, 6, 7],
            num_vertices_in_each_face: vec![3, 3, 3, 3],
            ..BlenderMesh::default()
        };

        assert_eq!(triangulated_mesh, expected_mesh);
    }

    #[test]
    fn set_joints_per_vert() {
        let mut start_mesh = BlenderMesh {
            vertex_group_indices: Some(vec![0, 2, 3, 4, 0, 1, 3, 2]),
            num_groups_for_each_vertex: Some(vec![1, 3, 4]),
            vertex_group_weights: Some(vec![1.0, 0.5, 0.2, 0.3, 0.6, 0.15, 0.1, 0.15]),
            ..BlenderMesh::default()
        };

        start_mesh.set_groups_per_vertex(3);
        let three_joints_per_vert = start_mesh;

        let expected_mesh = BlenderMesh {
            vertex_group_indices: Some(vec![0, 0, 0, 2, 4, 3, 0, 1, 2]),
            num_groups_for_each_vertex: Some(vec![3, 3, 3]),
            vertex_group_weights: Some(vec![1.0, 0.0, 0.0, 0.5, 0.3, 0.2, 0.6, 0.15, 0.15]),
            ..BlenderMesh::default()
        };

        assert_eq!(three_joints_per_vert, expected_mesh);
    }
}