1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#![doc = include_str!("../doc/mem.md")]

use core::{
	cell::Cell,
	mem,
};

use funty::Unsigned;
use radium::marker::BitOps;

#[doc = include_str!("../doc/mem/BitRegister.md")]
pub trait BitRegister: Unsigned + BitOps {
	/// The number of bits required to store an index in the range `0 .. BITS`.
	const INDX: u8 = bits_of::<Self>().trailing_zeros() as u8;
	/// A mask over all bits that can be used as an index within the element.
	/// This is the value with the least significant `INDX`-many bits set high.
	const MASK: u8 = bits_of::<Self>() as u8 - 1;
	/// The literal `!0`.
	const ALL: Self;
}

/// Marks certain fundamentals as processor registers.
macro_rules! register {
	($($t:ty),+ $(,)?) => { $(
		impl BitRegister for $t {
			const ALL: Self = !0;
		}
	)+ };
}

register!(u8, u16, u32);

/** `u64` can only be used as a register on processors whose word size is at
least 64 bits.

This implementation is not present on targets with 32-bit processor words.
**/
#[cfg(target_pointer_width = "64")]
impl BitRegister for u64 {
	const ALL: Self = !0;
}

register!(usize);

/// Counts the number of bits in a value of type `T`.
pub const fn bits_of<T>() -> usize {
	core::mem::size_of::<T>().saturating_mul(<u8>::BITS as usize)
}

#[doc = include_str!("../doc/mem/elts.md")]
pub const fn elts<T>(bits: usize) -> usize {
	let width = bits_of::<T>();
	if width == 0 {
		return 0;
	}
	bits / width + (bits % width != 0) as usize
}

/// Tests if a type has alignment equal to its size.
#[doc(hidden)]
#[cfg(not(tarpaulin_include))]
pub const fn aligned_to_size<T>() -> bool {
	mem::align_of::<T>() == mem::size_of::<T>()
}

/// Tests if two types have identical layouts (size and alignment are equal).
#[doc(hidden)]
#[cfg(not(tarpaulin_include))]
pub const fn layout_eq<T, U>() -> bool {
	mem::align_of::<T>() == mem::align_of::<U>()
		&& mem::size_of::<T>() == mem::size_of::<U>()
}

#[doc(hidden)]
#[repr(transparent)]
#[doc = include_str!("../doc/mem/BitElement.md")]
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitElement<T = usize> {
	pub elem: T,
}

/// Creates a `BitElement` implementation for an integer and its atomic/cell
/// variants.
macro_rules! element {
	($($size:tt, $bare:ty => $atom:ident);+ $(;)?) => { $(
		impl BitElement<$bare> {
			/// Creates a new element wrapper from a raw integer.
			pub const fn new(elem: $bare) -> Self {
				Self {
					elem,
				}
			}
		}

		impl BitElement<Cell<$bare>> {
			/// Creates a new element wrapper from a raw integer.
			pub const fn new(elem: $bare) -> Self {
				Self {
					elem: Cell::new(elem),
				}
			}
		}

		radium::if_atomic!( if atomic($size) {
			use core::sync::atomic::$atom;
			impl BitElement<$atom> {
				/// Creates a new element wrapper from a raw integer.
				pub const fn new(elem: $bare) -> Self {
					Self {
						elem: <$atom>::new(elem),
					}
				}
			}
		});
	)+ };
}

element! {
	8, u8 => AtomicU8;
	16, u16 => AtomicU16;
	32, u32 => AtomicU32;
}

#[cfg(target_pointer_width = "64")]
element!(64, u64 => AtomicU64);

element!(size, usize => AtomicUsize);

#[cfg(test)]
mod tests {
	use super::*;
	use crate::access::*;

	#[test]
	fn integer_properties() {
		assert!(aligned_to_size::<u8>());
		assert!(aligned_to_size::<BitSafeU8>());
		assert!(layout_eq::<u8, BitSafeU8>());

		assert!(aligned_to_size::<u16>());
		assert!(aligned_to_size::<BitSafeU16>());
		assert!(layout_eq::<u16, BitSafeU16>());

		assert!(aligned_to_size::<u32>());
		assert!(aligned_to_size::<BitSafeU32>());
		assert!(layout_eq::<u32, BitSafeU32>());

		assert!(aligned_to_size::<usize>());
		assert!(aligned_to_size::<BitSafeUsize>());
		assert!(layout_eq::<usize, BitSafeUsize>());

		#[cfg(target_pointer_width = "64")]
		{
			assert!(aligned_to_size::<u64>());
			assert!(aligned_to_size::<BitSafeU64>());
			assert!(layout_eq::<u64, BitSafeU64>());
		}
	}
}