1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
//! Constructor macros for the crate’s collection types.

#![allow(deprecated)]

#[macro_use]
#[doc(hidden)]
pub mod internal;

/** Constructs a type definition for a [`BitArray`].

This macro takes a minimum number of bits, and optionally a set of [`BitOrder`]
and [`BitStore`] implementors, and creates a `BitArray` type definition that
satisfies them. Because this macro is used in type position, it uses
`PascalCase` rather than `snake_case` for its name.

# Grammar

```rust
use bitvec::prelude::*;
use core::cell::Cell;

const CENT: usize = bitvec::mem::elts::<usize>(100);
let a: BitArr!(for 100)
  = BitArray::<Lsb0, [usize; CENT]>::zeroed();

let b: BitArr!(for 100, in u32)
  = BitArray::<Lsb0, [u32; 4]>::zeroed();

let c: BitArr!(for 100, in Msb0, Cell<u16>)
  = BitArray::<Msb0, [Cell<u16>; 7]>::zeroed();
```

The length expression must be a `const`-expression. It may be a literal or a
named `const` expression. The type arguments have no restrictions, so long as
they resolve to valid trait implementors.

[`BitArray`]: crate::array::BitArray
[`BitOrder`]: crate::order::BitOrder
[`BitStore`]: crate::store::BitStore
**/
#[macro_export]
macro_rules! BitArr {
	(for $len:expr, in $order:ty, $store:ty $(,)?) => {
		$crate::array::BitArray::<
			$order, [$store; $crate::mem::elts::<$store>($len)]
		>
	};

	(for $len:expr, in $store:ty $(,)?) => {
		$crate::BitArr!(for $len, in $crate::order::Lsb0, $store)
	};

	(for $len:expr) => {
		$crate::BitArr!(for $len, in usize)
	};
}

/** Constructs a new [`BitArray`] from a bit-pattern description.

This macro takes a superset of the [`vec!`] argument syntax: it may be invoked
with either a sequence of bit expressions, or a single bit expression and a
repetition counter. Additionally, you may provide the names of a [`BitOrder`]
and a [`BitStore`] implementor as the `BitArray`’s type arguments.

# Argument Rules

Bit expressions must be integer literals. Ambiguity restrictions in the macro
syntax forbid the use of identifiers to existing variables, even `const` values.
These are converted to `bool` through the expression `$val != 0`. Any non-zero
enteger becomes `true`, and `0` becomes `false`.

You may use any name or path to a [`BitOrder`] implementation. However, the
identifier tokens `Lsb0`, `Msb0`, and `LocalBits` are matched directly and
specialized to have compile-time constructions, whereäs any other name or path
will not be known to the macro, and will execute at runtime.

The [`BitStore`] argument **must** be the name of an unsigned integer
fundamental, an atomic, or a `Cell<>` wrapper of that unsigned integer. These
are matched by token, not by type, and no other identifier is accepted. Using
any other token will cause the macro to fail.

## `const` Production

Prepending the argument list with `const` (so `bitarr!(ARGS…)` becomes
`bitarr!(const ARGS…)`) causes the macro to only expand to code that can be used
in `const` contexts. This limits any supplied ordering to be **only** the tokens
`Lsb0`, `Msb0`, and `LocalBits`; no other token is permitted, even if the token
resolves to the same ordering implementation.

The macro expands into code that can be used to initialize a `const` or `static`
binding. This is the **only** way to construct a `BitArray` in `const` contexts,
until the `const` system permits generics and trait methods.

# Examples

```rust
use bitvec::prelude::*;
use core::cell::Cell;

radium::if_atomic! { if atomic(32) {
  use core::sync::atomic::AtomicU32;
} }

let a: BitArray = bitarr![0, 1, 0, 1, 2];
assert_eq!(a.count_ones(), 3);

let b: BitArray = bitarr![2; 5];
assert!(b.all());
assert!(b.len() >= 5);

let c = bitarr![Lsb0, Cell<u16>; 0, 1, 0, 0, 1];
radium::if_atomic! { if atomic(32) {
	let d = bitarr![Msb0, AtomicU32; 0, 0, 1, 0, 1];
} }

let e: BitArr!(for 20, in LocalBits, u8) = bitarr![LocalBits, u8; 0; 20];
```

[`BitArray`]: crate::array::BitArray
[`BitOrder`]: crate::order::BitOrder
[`BitStore`]: crate::store::BitStore
[`vec!`]: macro@alloc::vec
**/
#[macro_export]
macro_rules! bitarr {
	/* `const`-expression constructors.

	These arms expand to expressions which are valid to use in `const` position,
	such as within `const fn` bodies, or as the initializers of `static` or
	`const` bindings.

	They are more restricted than the general variants below, because the trait
	system is not usable in `const` contexts and thus these expansions can only
	use codepaths defined within this module, and not any of the general crate
	systems.

	All valid invocations with a leading `const` token will remain valid if the
	`const` is removed, though their expansion may cease to be valid in `const`
	contexts.
	*/
	(const $order:ty, $store:ty; $val:expr; $len:expr) => {{
		use $crate::macros::internal::core;
		type Mem = <$store as $crate::store::BitStore>::Mem;

		const ELTS: usize = $crate::mem::elts::<$store>($len);
		const ELEM: Mem = $crate::__extend_bool!($val, $store);
		const DATA: [Mem; ELTS] = [ELEM; ELTS];

		type This = $crate::array::BitArray<$order, [$store; ELTS]>;
		unsafe { core::mem::transmute::<_, This>(DATA) }
	}};
	(const $val:expr; $len:expr) => {{
		$crate::bitarr!(const $crate::order::Lsb0, usize; $val; $len)
	}};

	(const $order:ident, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;

		const ELTS: usize = $crate::__count_elts!($store; $($val),*);
		type Data = [Celled; ELTS];
		const DATA: Data =
			$crate::__encode_bits!($order, Cell<$store>; $($val),*);

		type This = $crate::array::BitArray<$order, Data>;
		unsafe { core::mem::transmute::<_, This>(DATA) }
	}};
	(const $order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		use $crate::macros::internal::core;

		const ELTS: usize = $crate::__count_elts!($store; $($val),*);
		type Data = [$store; ELTS];
		const DATA: Data = $crate::__encode_bits!($order, $store; $($val),*);

		type This = $crate::array::BitArray<$order, Data>;
		unsafe { core::mem::transmute::<_, This>(DATA) }
	}};

	(const $($val:expr),* $(,)?) => {{
		$crate::bitarr!(const Lsb0, usize; $($val),*)
	}};

	/* Non-`const` constructors.

	These expansions are allowed to produce that does not run in `const`
	contexts. While it is *likely* that the expansions will be evaluated at
	compile-time, this is done in LLVM, not in Rust MIR.
	*/

	//  Bit-repetition syntax.
	($order:ty, $store:ty; $val:expr; $len:expr) => {{
		$crate::bitarr!(const $order, $store; $val; $len)
	}};
	($val:expr; $len:expr) => {{
		$crate::bitarr!(const $val; $len)
	}};

	//  Bit-sequence syntax.

	/* The duplicate matchers differing in `:ident` and `:path` exploit a rule
	of macro expansion so that the literal tokens `Lsb0`, `Msb0`, and
	`LocalBits` can be propagated through the entire expansion, thus selecting
	optimized construction sequences. Names of orderings other than these three
	tokens become opaque, and route to a fallback implementation that is less
	likely to be automatically optimized during codegen.

	`:ident` fragments are inspectable as literal tokens by future macros, while
	`:path` fragments become a single opaque object that can only match as
	`:path` or `:tt` bindings when passed along.
	*/

	($order:ident, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;

		const ELTS: usize = $crate::__count_elts!($store; $($val),*);
		type Data = [Celled; ELTS];
		type This = $crate::array::BitArray<$order, Data>;

		This::new($crate::__encode_bits!($order, Cell<$store>; $($val),*))
	}};
	($order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		const ELTS: usize = $crate::__count_elts!($store; $($val),*);
		type This = $crate::array::BitArray<$order, [$store; ELTS]>;

		This::new($crate::__encode_bits!($order, $store; $($val),*))
	}};

	($order:path, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;

		const ELTS: usize = $crate::__count_elts!($store; $($val),*);
		type This = $crate::array::BitArray<$order, [Celled; ELTS]>;

		This::new($crate::__encode_bits!($order, Cell<$store>; $($val),*))
	}};
	($order:path, $store:ident; $($val:expr),* $(,)?) => {{
		const ELTS: usize = $crate::__count_elts!($store; $($val),*);
		type This = $crate::array::BitArray<$order, [$store; ELTS]>;

		This::new($crate::__encode_bits!($order, $store; $($val),*))
	}};

	($($val:expr),* $(,)?) => {
		$crate::bitarr!(Lsb0, usize; $($val),*)
	};
}

/** Creates a borrowed [`BitSlice`] in the local scope.

This macro constructs a [`BitArray`] temporary and then immediately borrows it
as a `BitSlice`. The compiler should extend the lifetime of the underlying
`BitArray` for the duration of the expression’s lifetime.

This macro takes a superset of the [`vec!`] argument syntax: it may be invoked
with either a sequence of bit expressions, or a single bit expression and a
repetiton counter. Additionally, you may provide the names of a [`BitOrder`] and
a [`BitStore`] implementor as the `BitArray`’s type arguments. You may also use
`mut` as the first argument of the macro in order to produce an `&mut BitSlice`
reference rather than a `&BitSlice` immutable reference.

# Argument Rules

Bit expressions must be integer literals. Ambiguity restrictions in the macro
syntax forbid the use of identifiers to existing variables, even `const` values.
These are converted to `bool` through the expression `$val != 0`. Any non-zero
enteger becomes `true`, and `0` becomes `false`.

You may use any name or path to a [`BitOrder`] implementation. However, the
identifier tokens `Lsb0`, `Msb0`, and `LocalBits` are matched directly and
specialized to have compile-time constructions, whereäs any other name or path
will not be known to the macro, and will execute at runtime.

The [`BitStore`] argument **must** be the name of an unsigned integer
fundamental, an atomic, or a `Cell<>` wrapper of that unsigned integer. These
are matched by token, not by type, and no other identifier is accepted. Using
any other token will cause the macro to fail.

## `static` Production

Prepending the argument list with `static` or `static mut` (so `bits!(ARGS…)`
becomes `bits!(static [mut] ARGS…)`) causes the macro to expand to code that
emits a hidden `static` or `static mut` value, initialized with a
`bitarr!(const ARGS…)` expansion and then reborrowed. The name of the hidden
static object does not escape the macro invocation, and so the returned
`BitSlice` handle is the single point of access to it.

Because both indexing and mutable reborrows are forbidden in `const` contexts,
the produced `BitSlice` references can only be bound to `let`, not to `static`.
They have the `&'static` lifetime, but to give the *names* a `static` binding,
you must use `bitarr!(const ARGS…)` and then borrowed as a `BitSlice` at the
point of use.

# Examples

```rust
use bitvec::prelude::*;
use core::cell::Cell;

radium::if_atomic! { if atomic(16) {
  use core::sync::atomic::AtomicU32;
} }

let a: &BitSlice = bits![0, 1, 0, 1, 2];
assert_eq!(a.count_ones(), 3);

let b: &mut BitSlice = bits![mut 2; 5];
assert!(b.all());
assert_eq!(b.len(), 5);

let c = bits![Lsb0, Cell<u16>; 0, 1, 0, 0, 1];
c.set_aliased(0, true);
let d = bits![Msb0, AtomicU32; 0, 0, 1, 0, 1];
d.set_aliased(0, true);
```

[`BitArray`]: crate::array::BitArray
[`BitOrder`]: crate::order::BitOrder
[`BitSlice`]: crate::slice::BitSlice
[`BitStore`]: crate::store::BitStore
[`vec!`]: macro@alloc::vec
**/
#[macro_export]
macro_rules! bits {
	(static mut $order:ty, Cell<$store:ident>; $val:expr; $len:expr) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;
		static mut DATA: $crate::BitArr!(for $len, in $order, $store) =
			$crate::bitarr!(const $order, $store; $val; $len);
		unsafe {
			&mut *(
				DATA.get_unchecked_mut(.. $len)
					as *mut $crate::slice::BitSlice<$order, $store>
					as *mut $crate::slice::BitSlice<$order, Celled>
			)
		}
	}};
	(static mut $order:ty, $store:ident; $val:expr; $len:expr) => {{
		static mut DATA: $crate::BitArr!(for $len, in $order, $store) =
			$crate::bitarr!(const $order, $store; $val; $len);
		unsafe { DATA.get_unchecked_mut(.. $len) }
	}};
	(static mut $val:expr; $len:expr) => {{
		static mut DATA: $crate::BitArr!(for $len) =
			$crate::bitarr!(const $crate::order::Lsb0, usize; $val; $len);
		unsafe { DATA.get_unchecked_mut(.. $len) }
	}};

	(static mut $order:ident, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;
		const BITS: usize = $crate::__count!($($val),*);

		static mut DATA: $crate::BitArr!(for BITS, in $order, $store) =
			$crate::bitarr!(const $order, $store; $($val),*);
		unsafe {
			&mut *(
				DATA.get_unchecked_mut(.. BITS)
					as *mut $crate::slice::BitSlice<$order, $store>
					as *mut $crate::slice::BitSlice<$order, Celled>
			)
		}
	}};
	(static mut $order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		static mut DATA: $crate::BitArr!(for BITS, in $order, $store) =
			$crate::bitarr!(const $order, $store; $($val),*);
		unsafe { DATA.get_unchecked_mut(.. BITS) }
	}};
	(static mut $($val:expr),* $(,)?) => {{
		$crate::bits!(static mut Lsb0, usize; $($val),*)
	}};

	(static $order:ty, Cell<$store:ident>; $val:expr; $len:expr) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;
		static DATA: $crate::BitArr!(for $len, in $order, $store) =
			$crate::bitarr!(const $order, $store; $val; $len);
		unsafe {
			&*(
				DATA.get_unchecked(.. $len)
					as *const $crate::slice::BitSlice<$order, $store>
					as *const $crate::slice::BitSlice<$order, Celled>
			)
		}
	}};
	(static $order:ty, $store:ident; $val:expr; $len:expr) => {{
		static DATA: $crate::BitArr!(for $len, in $order, $store) =
			$crate::bitarr!(const $order, $store; $val; $len);
		unsafe { DATA.get_unchecked(.. $len) }
	}};
	(static $val:expr; $len:expr) => {{
		static DATA: $crate::BitArr!(for $len) =
			$crate::bitarr!(const $crate::order::Lsb0, usize; $val; $len);
		unsafe { DATA.get_unchecked(.. $len) }
	}};

	(static $order:ident, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		use $crate::macros::internal::core;
		type Celled = core::cell::Cell<$store>;
		const BITS: usize = $crate::__count!($($val),*);

		static mut DATA: $crate::BitArr!(for BITS, in $order, $store) =
			$crate::bitarr!(const $order, $store; $($val),*);
		unsafe {
			&*(
				DATA.get_unchecked_mut(.. BITS)
					as *const $crate::slice::BitSlice<$order, $store>
					as *const $crate::slice::BitSlice<$order, Celled>
			)
		}
	}};
	(static $order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		static DATA: $crate::BitArr!(for BITS, in $order, $store) =
			$crate::bitarr!(const $order, $store; $($val),*);
		unsafe { DATA.get_unchecked(.. BITS) }
	}};
	(static $($val:expr),* $(,)?) => {{
		$crate::bits!(static Lsb0, usize; $($val),*)
	}};

	//  Repetition syntax `[bit ; count]`.
	//  NOTE: `count` must be a `const`, as this is a non-allocating macro.

	//  Explicit order and store.
	(mut $order:ty, $store:ty; $val:expr; $len:expr) => {{
		&mut $crate::bitarr!($order, $store; $val; $len)[.. $len]
	}};
	//  Default order and store.
	(mut $val:expr; $len:expr) => {
		$crate::bits!(mut $crate::order::Lsb0, usize; $val; $len)
	};

	//  Sequence syntax `[bit (, bit)*]` or `[(bit ,)*]`.

	//  Explicit order and store.

	(mut $order:ident, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&mut $crate::bitarr!($order, Cell<$store>; $($val),*)[.. BITS]
	}};
	(mut $order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&mut $crate::bitarr!($order, $store; $($val),*)[.. BITS]
	}};

	(mut $order:path, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&mut $crate::bitarr!($order, Cell<$store>; $($val),*)[.. BITS]
	}};
	(mut $order:path, $store:ident; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&mut $crate::bitarr!($order, $store; $($val),*)[.. BITS]
	}};

	//  Default order and store.
	(mut $($val:expr),* $(,)?) => {
		$crate::bits!(mut Lsb0, usize; $($val),*)
	};

	//  Repeat everything from above, but now immutable.

	($order:ty, $store:ty; $val:expr; $len:expr) => {{
		&$crate::bitarr!($order, $store; $val; $len)[.. $len]
	}};
	($val:expr; $len:expr) => {
		$crate::bits!($crate::order::Lsb0, usize; $val; $len)
	};

	($order:ident, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&$crate::bitarr!($order, Cell<$store>; $($val),*)[.. BITS]
	}};
	($order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&$crate::bitarr!($order, $store; $($val),*)[.. BITS]
	}};

	($order:path, Cell<$store:ident>; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&$crate::bitarr!($order, Cell<$store>; $($val),*)[.. BITS]
	}};
	($order:path, $store:ident; $($val:expr),* $(,)?) => {{
		const BITS: usize = $crate::__count!($($val),*);
		&$crate::bitarr!($order, $store; $($val),*)[.. BITS]
	}};

	//  Default order and store.
	($($val:expr),* $(,)?) => {
		$crate::bits!(Lsb0, usize; $($val),*)
	};
}

/** Constructs a new [`BitVec`] from a bit-pattern description.

This macro takes a superset of the [`vec!`] argument syntax: it may be invoked
with either a sequence of bit expressions, or a single bit expression and a
repetition counter. Additionally, you may provide the names of a [`BitOrder`]
and a [`BitStore`] implementor as the `BitVec`’s type arguments.

# Argument Rules

Bit expressions must be integer literals. Ambiguity restrictions in the macro
syntax forbid the use of identifiers to existing variables, even `const` values.
These are converted to `bool` through the expression `$val != 0`. Any non-zero
enteger becomes `true`, and `0` becomes `false`.

You may use any name or path to a [`BitOrder`] implementation. However, the
identifier tokens `Lsb0`, `Msb0`, and `LocalBits` are matched directly and
specialized to have compile-time constructions, whereäs any other name or path
will not be known to the macro, and will execute at runtime.

The [`BitStore`] argument **must** be the name of an unsigned integer
fundamental, an atomic, or a `Cell<>` wrapper of that unsigned integer. These
are matched by token, not by type, and no other identifier as accepted. Using
any other token will cause the macro to fail.

# Examples

```rust
use bitvec::prelude::*;
use core::cell::Cell;

radium::if_atomic! { if atomic(32) {
  use core::sync::atomic::AtomicU32;
} }

let a: BitVec = bitvec![0, 1, 0, 1, 2];
assert_eq!(a.count_ones(), 3);

let b: BitVec = bitvec![2; 5];
assert!(b.all());
assert_eq!(b.len(), 5);

let c = bitvec![Lsb0, Cell<u16>; 0, 1, 0, 0, 1];
let d = bitvec![Msb0, AtomicU32; 0, 0, 1, 0, 1];
```

[`BitOrder`]: crate::order::BitOrder
[`BitStore`]: crate::store::BitStore
[`BitVec`]: crate::vec::BitVec
[`vec!`]: macro@alloc::vec
**/
#[macro_export]
#[cfg(feature = "alloc")]
macro_rules! bitvec {
	//  First, capture the repetition syntax, as it is permitted to use runtime
	//  values for the repetition count.
	($order:ty, $store:ty; $val:expr; $len:expr) => {
		$crate::vec::BitVec::<$order, $store>::repeat($val != 0, $len)
	};

	($val:expr; $len:expr) => {
		$crate::bitvec!($crate::order::Lsb0, usize; $val; $len)
	};

	//  Delegate all others to the `bits!` macro.
	($($arg:tt)*) => {{
		$crate::vec::BitVec::from_bitslice($crate::bits!($($arg)*))
	}};
}

/** Constructs a new [`BitBox`] from a bit-pattern description.

This forwards all its arguments to [`bitvec!`], and then calls
[`.into_boxed_bitslice()`] on the result to freeze the allocation.

[`BitBox`]: crate::boxed::BitBox
[`bitvec!`]: macro@crate::bitvec
[`.into_boxed_bitslice()`]: crate::vec::BitVec::into_boxed_bitslice
**/
#[macro_export]
#[cfg(feature = "alloc")]
macro_rules! bitbox {
	($($arg:tt)*) => {
		$crate::bitvec!($($arg)*).into_boxed_bitslice()
	};
}

#[cfg(test)]
mod tests;