1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
/*! A dynamically-sized view into individual bits of a memory region.

You can read the language’s [`slice` module documentation][std] here.

This module defines the [`BitSlice`] region, and all of its associated support
code.

`BitSlice` is the primary working type of this crate. It is a wrapper type over
`[T]` which enables you to view, manipulate, and take the address of individual
bits in memory. It behaves in every possible respect exactly like an ordinary
slice: it is dynamically-sized, and must be held by `&` or `&mut` reference,
just like `[T]`, and implements every inherent method and trait that `[T]` does,
to the absolute limits of what Rust permits.

The key to `BitSlice`’s powerful capability is that references to it use a
special encoding that store, in addition to the address of the base element and
the bit length, the index of the starting bit in the base element. This custom
reference encoding has some costs in what APIs are possible – for instance, Rust
forbids it from supporting `&mut BitSlice[index] = bool` write indexing – but in
exchange, enables it to be *far* more capable than any other bit-slice crate in
existence.

Because of the volume of code that must be written to match the `[T]` standard
API, this module is organized very differently than the slice implementation in
the `core` and `std` distribution libraries.

- the root module `slice` contains new APIs that have no counterpart in `[T]`
- `slice/api` contains reïmplementations of the `[T]` inherent methods
- `slice/iter` implements all of the iteration capability
- `slice/ops` implements the traits in `core::ops`
- `slice/proxy` implements the proxy reference used in place of `&mut bool`
- `slice/traits` implements all other traits not in `core::ops`
- lastly, `slice/tests` contains all the unit tests.

[`BitSlice`]: struct.BitSlice.html
[std]: https://doc.rust-lang.org/std/slice
!*/

use crate::{
	access::BitAccess,
	devel as dvl,
	domain::{
		BitDomain,
		BitDomainMut,
		Domain,
		DomainMut,
	},
	index::{
		BitIdx,
		BitMask,
		BitRegister,
	},
	mem::BitMemory,
	order::{
		BitOrder,
		Lsb0,
	},
	pointer::BitPtr,
	store::BitStore,
};

use core::{
	cmp,
	marker::PhantomData,
	ops::RangeBounds,
	ptr,
	slice,
};

use funty::IsInteger;

use radium::Radium;

use tap::pipe::Pipe;

/** A slice of individual bits, anywhere in memory.

This is the main working type of the crate. It is analagous to `[bool]`, and is
written to be as close as possible to drop-in replacable for it. This type
contains most of the *methods* used to operate on memory, but it will rarely be
named directly in your code. You should generally prefer to use [`BitArray`] for
fixed-size arrays or [`BitVec`] for dynamic vectors, and use `&BitSlice`
references only where you would directly use `&[bool]` or `&[u8]` references
before using this crate.

As it is a slice wrapper, you are intended to work with this through references
(`&BitSlice<O, T>` and `&mut BitSlice<O, T>`) or through the other data
structures provided by `bitvec` that are implemented atop it. Once created,
references to `BitSlice` are guaranteed to work just like references to `[bool]`
to the fullest extent possible in the Rust language.

Every bit-vector crate can give you an opaque type that hides shift/mask
operations from you. `BitSlice` does far more than this: it offers you the full
Rust guarantees about reference behavior, including lifetime tracking,
mutability and aliasing awareness, and explicit memory control, *as well as* the
full set of tools and APIs available to the standard `[bool]` slice type.
`BitSlice` can arbitrarily split and subslice, just like `[bool]`. You can write
a linear consuming function and keep the patterns already know.

For example, to trim all the bits off either edge that match a condition, you
could write

```rust
use bitvec::prelude::*;

fn trim<O: BitOrder, T: BitStore>(
  bits: &BitSlice<O, T>,
  to_trim: bool,
) -> &BitSlice<O, T> {
  let stop = |b: &bool| *b != to_trim;
  let front = bits.iter().position(stop).unwrap_or(0);
  let back = bits.iter().rposition(stop).unwrap_or(0);
  &bits[front ..= back]
}
# assert_eq!(trim(bits![0, 0, 1, 1, 0, 1, 0], false), bits![1, 1, 0, 1]);
```

to get behavior something like
`trim(&BitSlice[0, 0, 1, 1, 0, 1, 0], false) == &BitSlice[1, 1, 0, 1]`.

# Documentation

All APIs that mirror something in the standard library will have an `Original`
section linking to the corresponding item. All APIs that have a different
signature or behavior than the original will have an `API Differences` section
explaining what has changed, and how to adapt your existing code to the change.

These sections look like this:

# Original

[`slice`](https://doc.rust-lang.org/std/primitive.slice.html)

# API Differences

The slice type `[bool]` has no type parameters. `BitSlice<O, T>` has two: one
for the memory type used as backing storage, and one for the order of bits
within that memory type.

`&BitSlice<O, T>` is capable of producing `&bool` references to read bits out
of its memory, but is not capable of producing `&mut bool` references to write
bits *into* its memory. Any `[bool]` API that would produce a `&mut bool` will
instead produce a [`BitMut<O, T>`] proxy reference.

# Behavior

`BitSlice` is a wrapper over `[T]`. It describes a region of memory, and must be
handled indirectly. This is most commonly through the reference types
`&BitSlice` and `&mut BitSlice`, which borrow memory owned by some other value
in the program. These buffers can be directly owned by the sibling types
`BitBox`, which behavios like `Box<[T]>`, and `BitVec`, which behaves like
`Vec<T>`. It cannot be used as the type parameter to a standard-library-provided
handle type.

The `BitSlice` region provides access to each individual bit in the region, as
if each bit had a memory address that you could use to dereference it. It packs
each logical bit into exactly one bit of storage memory, just like
[`std::bitset`] and [`std::vector<bool>`] in C++.

# Type Parameters

`BitSlice` has two type parameters which propagate through nearly every public
API in the crate. These are very important to its operation, and your choice
of type arguments informs nearly every part of this library’s behavior.

## `T: BitStore`

This is the simpler of the two parameters. It refers to the integer type used to
hold bits. It must be one of the Rust unsigned integer fundamentals: `u8`,
`u16`, `u32`, `usize`, and on 64-bit systems only, `u64`. In addition, it can
also be the `Cell<N>` wrapper over any of those, or their equivalent types in
`core::sync::atomic`. Unless you know you need to have `Cell` or atomic
properties, though, you should use a plain integer.

The default type argument is `usize`.

The argument you choose is used as the basis of a `[T]` slice, over which the
`BitSlice` view type is placed. `BitSlice<_, T>` is subject to all of the rules
about alignment that `[T]` is. If you are working with in-memory representation
formats, chances are that you already have a `T` type with which you’ve been
working, and should use it here.

If you are only using this crate to discard the seven wasted bits per `bool`
of a collection of `bool`s, and are not too concerned about the in-memory
representation, then you should use the default type argument of `usize`. This
is because most processors work best when moving an entire `usize` between
memory and the processor itself, and using a smaller type may cause it to slow
down.

## `O: BitOrder`

This is the more complex parameter. It has a default argument which, like
`usize`, is the good-enough choice when you do not explicitly need to control
the representation of bits in memory.

This parameter determines how to index the bits within a single memory element
`T`. Computers all agree that in a slice of elements `T`, the element with the
lower index has a lower memory address than the element with the higher index.
But the individual bits within an element do not have addresses, and so there is
no uniform standard of which bit is the zeroth, which is the first, which is the
penultimate, and which is the last.

To make matters even more confusing, there are two predominant ideas of
in-element ordering that often *correlate* with the in-element *byte* ordering
of integer types, but are in fact wholly unrelated! `bitvec` provides these two
main orders as types for you, and if you need a different one, it also provides
the tools you need to make your own.

### Least Significant Bit Comes First

This ordering, named the [`Lsb0`] type, indexes bits within an element by
placing the `0` index at the least significant bit (numeric value `1`) and the
final index at the most significant bit (numeric value `T::min_value()`, for
signed integers on most machines).

For example, this is the ordering used by the [TCP wire format], and by most C
compilers to lay out bit-field struct members on little-endian **byte**-ordered
machines.

### Most Significant Bit Comes First

This ordering, named the [`Msb0`] type, indexes bits within an element by
placing the `0` index at the most significant bit (numeric value `T::min_value()`
for most signed integers) and the final index at the least significant bit
(numeric value `1`).

This is the ordering used by most C compilers to lay out bit-field struct
members on big-endian **byte**-ordered machines.

### Default Ordering

The default ordering is `Lsb0`, as it typically produces shorter object code
than `Msb0` does. If you are implementing a collection, then `Lsb0` is likely
the more performant ordering; if you are implementing a buffer protocol, then
your choice of ordering is dictated by the protocol definition.

# Safety

`BitSlice` is designed to never introduce new memory unsafety that you did not
provide yourself, either before or during the use of this crate. Bugs do, and
have, occured, and you are encouraged to submit any discovered flaw as a defect
report.

The `&BitSlice` reference type uses a private encoding scheme to hold all the
information needed in its stack value. This encoding is **not** part of the
public API of the library, and is not binary-compatible with `&[T]`.
Furthermore, in order to satisfy Rust’s requirements about alias conditions,
`BitSlice` performs type transformations on the `T` parameter to ensure that it
never creates the potential for undefined behavior.

You must never attempt to type-cast a reference to `BitSlice` in any way. You
must not use `mem::transmute` with `BitSlice` anywhere in its type arguments.
You must not use `as`-casting to convert between `*BitSlice` and any other type.
You must not attempt to modify the binary representation of a `&BitSlice`
reference value. These actions will all lead to runtime memory unsafety, are
(hopefully) likely to induce a program crash, and may possibly cause undefined
behavior at compile-time.

Everything in the `BitSlice` public API, even the `unsafe` parts, are guaranteed
to have no more unsafety than their equivalent parts in the standard library.
All `unsafe` APIs will have documentation explicitly detailing what the API
requires you to uphold in order for it to function safely and correctly. All
safe APIs will do so themselves.

# Performance

Like the standard library’s `[T]` slice, `BitSlice` is designed to be very easy
to use safely, while supporting `unsafe` when necessary. Rust has a powerful
optimizing engine, and `BitSlice` will frequently be compiled to have zero
runtime cost. Where it is slower, it will not be significantly slower than a
manual replacement.

As the machine instructions operate on registers rather than bits, your choice
of `T: BitOrder` type parameter can influence your slice’s performance. Using
larger register types means that slices can gallop over completely-filled
interior elements faster, while narrower register types permit more graceful
handling of subslicing and aliased splits.

# Construction

`BitSlice` views of memory can be constructed over borrowed data in a number of
ways. As this is a reference-only type, it can only ever be built by borrowing
an existing memory buffer and taking temporary control of your program’s view of
the region.

## Macro Constructor

`BitSlice` buffers can be constructed at compile-time through the [`bits!`]
macro. This macro accepts a superset of the `vec!` arguments, and creates an
appropriate buffer in your program’s static memory.

```rust
use bitvec::prelude::*;

let static_borrow = bits![0, 1, 0, 0, 1, 0, 0, 1];
let mutable_static: &mut BitSlice<_, _> = bits![mut 0; 8];

assert_ne!(static_borrow, mutable_static);
mutable_static.clone_from_bitslice(static_borrow);
assert_eq!(static_borrow, mutable_static);
```

Note that, despite constructing a `static mut` binding, the `bits![mut …]` call
is not `unsafe`, as the constructed symbol is hidden and only accessible by the
sole `&mut` reference returned by the macro call.

## Borrowing Constructors

The functions [`from_element`], [`from_element_mut`], [`from_slice`], and
[`from_slice_mut`] take references to existing memory, and construct `BitSlice`
references over them. These are the most basic ways to borrow memory and view it
as bits.

```rust
use bitvec::prelude::*;

let data = [0u16; 3];
let local_borrow = BitSlice::<Lsb0, _>::from_slice(&data);

let mut data = [0u8; 5];
let local_mut = BitSlice::<Lsb0, _>::from_slice_mut(&mut data);
```

## Trait Method Constructors

The [`BitView`] trait implements `.view_bits::<O>()` and `.view_bits_mut::<O>()`
methods on elements, arrays not larger than 32 elements, and slices. This trait,
imported in the crate prelude, is *probably* the easiest way for you to borrow
memory.

```rust
use bitvec::prelude::*;

let data = [0u32; 5];
let trait_view = data.view_bits::<Msb0>();

let mut data = 0usize;
let trait_mut = data.view_bits_mut::<Msb0>();
```

## Owned Bit Slices

If you wish to take ownership of a memory region and enforce that it is always
viewed as a `BitSlice` by default, you can use one of the [`BitArray`],
[`BitBox`], or [`BitVec`] types, rather than pairing ordinary buffer types with
the borrowing constructors.

```rust
use bitvec::prelude::*;

let slice = bits![0; 27];
let array = bitarr![LocalBits, u8; 0; 10];
# #[cfg(feature = "alloc")] fn allocs() {
let boxed = bitbox![0; 10];
let vec = bitvec![0; 20];
# } #[cfg(feature = "alloc")] allocs();

// arrays always round up
assert_eq!(array.as_bitslice(), slice[.. 16]);
# #[cfg(feature = "alloc")] fn allocs2() {
# let slice = bits![0; 27];
# let boxed = bitbox![0; 10];
# let vec = bitvec![0; 20];
assert_eq!(boxed.as_bitslice(), slice[.. 10]);
assert_eq!(vec.as_bitslice(), slice[.. 20]);
# } #[cfg(feature = "alloc")] allocs2();
```

[TCP wire format]: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
[`BitArray`]: ../array/struct.BitArray.html
[`BitBox`]: ../boxed/struct.BitBox.html
[`BitMut<O, T>`]: struct.BitMut.html
[`BitVec`]: ../vec/struct.BitVec.html
[`BitView`]: ../view/trait.BitView.html
[`Lsb0`]: ../order/struct.Lsb0.html
[`Msb0`]: ../order/struct.Msb0.html
[`bits!`]: ../macro.bits.html
[`bitvec::prelude::LocalBits`]: ../order/type.LocalBits.html
[`std::bitset`]: https://en.cppreference.com/w/cpp/utility/bitset
[`std::vector<bool>`]: https://en.cppreference.com/w/cpp/container/vector_bool
**/
#[repr(transparent)]
pub struct BitSlice<O = Lsb0, T = usize>
where
	O: BitOrder,
	T: BitStore,
{
	/// Mark the in-element ordering of bits
	_ord: PhantomData<O>,
	/// Mark the element type of memory
	_typ: PhantomData<[T]>,
	/// Indicate that this is a newtype wrapper over a wholly-untyped slice.
	///
	/// This is necessary in order for the Rust compiler to remove restrictions
	/// on the possible values of references to this slice `&BitSlice` and
	/// `&mut BitSlice`.
	///
	/// Rust has firm requirements that *any* reference that is directly usable
	/// to dereference a real value must conform to its rules about address
	/// liveness, type alignment, and for slices, trustworthy length. It is
	/// undefined behavior for a slice reference *to a dereferencable type* to
	/// violate any of these restrictions.
	///
	/// However, the value of a reference to a zero-sized type has *no* such
	/// restrictions, because that reference can never perform direct memory
	/// access. The compiler will accept any value in a slot typed as `&[()]`,
	/// because the values in it will never be used for a load or store
	/// instruction. If this were `[T]`, then Rust would make the pointer
	/// encoding used to manage values of `&BitSlice` become undefined behavior.
	///
	/// See the `pointer` module for information on the encoding used.
	_mem: [()],
}

/// Constructors are limited to integers only, and not their `Cell`s or atomics.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore + BitRegister,
{
	/// Constructs a shared `&BitSlice` reference over a shared element.
	///
	/// The [`BitView`] trait, implemented on all `T` elements, provides a
	/// method [`.view_bits::<O>()`] which delegates to this function and may be
	/// more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `elem`: A shared reference to a memory element.
	///
	/// # Returns
	///
	/// A shared `&BitSlice` over the `elem` element.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let elem = 0u8;
	/// let bits = BitSlice::<LocalBits, _>::from_element(&elem);
	/// assert_eq!(bits.len(), 8);
	/// ```
	///
	/// [`BitView`]: ../view/trait.BitView.html
	/// [`.view_bits::<O>()`]: ../view/trait.BitView.html#method.view_bits
	#[inline]
	pub fn from_element(elem: &T) -> &Self {
		unsafe {
			BitPtr::new_unchecked(elem, BitIdx::ZERO, T::Mem::BITS as usize)
		}
		.to_bitslice_ref()
	}

	/// Constructs an exclusive `&mut BitSlice` reference over an element.
	///
	/// The [`BitView`] trait, implemented on all `T` elements, provides a
	/// method [`.view_bits_mut::<O>()`] which delegates to this function and
	/// may be more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `elem`: An exclusive reference to a memory element.
	///
	/// # Returns
	///
	/// An exclusive `&mut BitSlice` over the `elem` element.
	///
	/// Note that the original `elem` reference will be inaccessible for the
	/// duration of the returned slice handle’s lifetime.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut elem = 0u16;
	/// let bits = BitSlice::<Msb0, _>::from_element_mut(&mut elem);
	/// bits.set(15, true);
	/// assert!(bits.get(15).unwrap());
	/// assert_eq!(elem, 1);
	/// ```
	///
	/// [`BitView`]: ../view/trait.BitView.html
	/// [`.view_bits_mut::<O>()`]:
	/// ../view/trait.BitView.html#method.view_bits_mut
	#[inline]
	pub fn from_element_mut(elem: &mut T) -> &mut Self {
		unsafe {
			BitPtr::new_unchecked(elem, BitIdx::ZERO, T::Mem::BITS as usize)
		}
		.to_bitslice_mut()
	}

	/// Constructs a shared `&BitSlice` reference over a shared element slice.
	///
	/// The [`BitView`] trait, implemented on all `[T]` slices, provides a
	/// method [`.view_bits::<O>()`] that is equivalent to this function and may
	/// be more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `slice`: A shared reference over a sequence of memory elements.
	///
	/// # Returns
	///
	/// If `slice` does not have fewer than [`MAX_ELTS`] elements, this returns
	/// `None`. Otherwise, it returns a shared `&BitSlice` over the `slice`
	/// elements.
	///
	/// # Conditions
	///
	/// The produced `&BitSlice` handle always begins at the zeroth bit.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let slice = &[0u8, 1];
	/// let bits = BitSlice::<Msb0, _>::from_slice(slice).unwrap();
	/// assert!(bits[15]);
	/// ```
	///
	/// An example showing this function failing would require a slice exceeding
	/// `!0usize >> 3` bytes in size, which is infeasible to produce.
	///
	/// [`BitView`]: ../view/trait.BitView.html
	/// [`MAX_ELTS`]: #associatedconstant.MAX_ELTS
	/// [`.view_bits::<O>()`]: ../view/trait.BitView.html#method.view_bits
	#[inline]
	pub fn from_slice(slice: &[T]) -> Option<&Self> {
		let elts = slice.len();
		//  Starting at the zeroth bit makes this counter an exclusive cap, not
		//  an inclusive cap.
		if elts >= Self::MAX_ELTS {
			return None;
		}
		Some(unsafe { Self::from_slice_unchecked(slice) })
	}

	/// Converts a slice reference into a `BitSlice` reference without checking
	/// that its size can be safely used.
	///
	/// # Safety
	///
	/// If the `slice` length is too long, then it will be capped at
	/// [`MAX_BITS`]. You are responsible for ensuring that the input slice is
	/// not unduly truncated.
	///
	/// Prefer [`from_slice`].
	///
	/// [`MAX_BITS`]: #associatedconstant.MAX_BITS
	/// [`from_slice`]: #method.from_slice
	#[inline]
	pub unsafe fn from_slice_unchecked(slice: &[T]) -> &Self {
		//  This branch could be removed by lowering the element ceiling by one,
		//  but `from_slice` should not be in any tight loops, so it’s fine.
		let bits = cmp::min(slice.len() * T::Mem::BITS as usize, Self::MAX_BITS);
		BitPtr::new_unchecked(slice.as_ptr(), BitIdx::ZERO, bits)
			.to_bitslice_ref()
	}

	/// Constructs an exclusive `&mut BitSlice` reference over a slice.
	///
	/// The [`BitView`] trait, implemented on all `[T]` slices, provides a
	/// method [`.view_bits_mut::<O>()`] that is equivalent to this function and
	/// may be more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `slice`: An exclusive reference over a sequence of memory elements.
	///
	/// # Returns
	///
	/// An exclusive `&mut BitSlice` over the `slice` elements.
	///
	/// Note that the original `slice` reference will be inaccessible for the
	/// duration of the returned slice handle’s lifetime.
	///
	/// # Panics
	///
	/// This panics if `slice` does not have fewer than [`MAX_ELTS`] elements.
	///
	/// [`MAX_ELTS`]: #associatedconstant.MAX_ELTS
	///
	/// # Conditions
	///
	/// The produced `&mut BitSlice` handle always begins at the zeroth bit of
	/// the zeroth element in `slice`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut slice = [0u8; 2];
	/// let bits = BitSlice::<Lsb0, _>::from_slice_mut(&mut slice).unwrap();
	///
	/// assert!(!bits[0]);
	/// bits.set(0, true);
	/// assert!(bits[0]);
	/// assert_eq!(slice[0], 1);
	/// ```
	///
	/// This example attempts to construct a `&mut BitSlice` handle from a slice
	/// that is too large to index. Either the `vec!` allocation will fail, or
	/// the bit-slice constructor will fail.
	///
	/// ```rust,should_panic
	/// # #[cfg(feature = "alloc")] {
	/// use bitvec::prelude::*;
	///
	/// let mut data = vec![0usize; BitSlice::<LocalBits, usize>::MAX_ELTS];
	/// let bits = BitSlice::<LocalBits, _>::from_slice_mut(&mut data[..]).unwrap();
	/// # }
	/// # #[cfg(not(feature = "alloc"))] panic!("No allocator present");
	/// ```
	///
	/// [`BitView`]: ../view/trait.BitView.html
	/// [`.view_bits_mut::<O>()`]:
	/// ../view/trait.BitView.html#method.view_bits_mut
	#[inline]
	pub fn from_slice_mut(slice: &mut [T]) -> Option<&mut Self> {
		let elts = slice.len();
		if elts >= Self::MAX_ELTS {
			return None;
		}
		Some(unsafe { Self::from_slice_unchecked_mut(slice) })
	}

	/// Converts a slice reference into a `BitSlice` reference without checking
	/// that its size can be safely used.
	///
	/// # Safety
	///
	/// If the `slice` length is too long, then it will be capped at
	/// [`MAX_BITS`]. You are responsible for ensuring that the input slice is
	/// not unduly truncated.
	///
	/// Prefer [`from_slice_mut`].
	///
	/// [`MAX_BITS`]: #associatedconstant.MAX_BITS
	/// [`from_slice_mut`]: #method.from_slice_mut
	#[inline]
	pub unsafe fn from_slice_unchecked_mut(slice: &mut [T]) -> &mut Self {
		let bits = cmp::min(slice.len() * T::Mem::BITS as usize, Self::MAX_BITS);
		BitPtr::new_unchecked(slice.as_ptr(), BitIdx::ZERO, bits)
			.to_bitslice_mut()
	}
}

/// Methods specific to `BitSlice<_, T>`, and not present on `[T]`.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Produces the empty slice. This is equivalent to `&[]` for ordinary
	/// slices.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits: &BitSlice = BitSlice::empty();
	/// assert!(bits.is_empty());
	/// ```
	#[inline]
	pub fn empty<'a>() -> &'a Self {
		BitPtr::EMPTY.to_bitslice_ref()
	}

	/// Produces the empty mutable slice. This is equivalent to `&mut []` for
	/// ordinary slices.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits: &mut BitSlice = BitSlice::empty_mut();
	/// assert!(bits.is_empty());
	/// ```
	#[inline]
	pub fn empty_mut<'a>() -> &'a mut Self {
		BitPtr::EMPTY.to_bitslice_mut()
	}

	/// Sets the bit value at the given position.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The bit index to set. It must be in the range `0 ..
	///   self.len()`.
	/// - `value`: The value to be set, `true` for `1` and `false` for `0`.
	///
	/// # Effects
	///
	/// If `index` is valid, then the bit to which it refers is set to `value`.
	///
	/// # Panics
	///
	/// This method panics if `index` is outside the slice domain.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 0u8;
	/// let bits = data.view_bits_mut::<Msb0>();
	///
	/// assert!(!bits.get(7).unwrap());
	/// bits.set(7, true);
	/// assert!(bits.get(7).unwrap());
	/// assert_eq!(data, 1);
	/// ```
	///
	/// This example panics when it attempts to set a bit that is out of bounds.
	///
	/// ```rust,should_panic
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut 0];
	/// bits.set(1, false);
	/// ```
	#[inline]
	pub fn set(&mut self, index: usize, value: bool) {
		let len = self.len();
		assert!(index < len, "Index out of range: {} >= {}", index, len);
		unsafe {
			self.set_unchecked(index, value);
		}
	}

	/// Sets a bit at an index, without checking boundary conditions.
	///
	/// This is generally not recommended; use with caution! For a safe
	/// alternative, see [`set`].
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The bit index to set. It must be in the range `0 ..
	///   self.len()`. It will not be checked.
	///
	/// # Effects
	///
	/// The bit at `index` is set to `value`.
	///
	/// # Safety
	///
	/// This method is **not** safe. It performs raw pointer arithmetic to seek
	/// from the start of the slice to the requested index, and set the bit
	/// there. It does not inspect the length of `self`, and it is free to
	/// perform out-of-bounds memory *write* access.
	///
	/// Use this method **only** when you have already performed the bounds
	/// check, and can guarantee that the call occurs with a safely in-bounds
	/// index.
	///
	/// # Examples
	///
	/// This example uses a bit slice of length 2, and demonstrates
	/// out-of-bounds access to the last bit in the element.
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 0u8;
	/// let bits = &mut data.view_bits_mut::<Msb0>()[2 .. 4];
	///
	/// assert_eq!(bits.len(), 2);
	/// unsafe {
	///   bits.set_unchecked(5, true);
	/// }
	/// assert_eq!(data, 1);
	/// ```
	///
	/// [`set`]: #method.set
	#[inline]
	pub unsafe fn set_unchecked(&mut self, index: usize, value: bool) {
		self.bitptr().write::<O>(index, value);
	}

	/// Tests if *all* bits in the slice domain are set (logical `∧`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 0
	/// 1 0 => 0
	/// 1 1 => 1
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether all bits in the slice domain are set. The empty slice returns
	/// `true`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 1];
	/// assert!(bits[.. 2].all());
	/// assert!(!bits[2 ..].all());
	/// ```
	#[inline]
	pub fn all(&self) -> bool {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => {
				/* Due to a bug in `rustc`, calling `.value()` on the two
				`BitMask` types, to use `T::Mem | T::Mem == T::Mem`, causes type
				resolution failure and only discovers the
				`for<'a> BitOr<&'a Self>` implementation in the trait bounds
				`T::Mem: BitMemory: IsUnsigned: BitOr<Self> + for<'a> BitOr<&'a Self>`.

				Until this is fixed, routing through the `BitMask`
				implementation suffices. The by-val and by-ref operator traits
				are at the same position in the bounds chain, making this quite
				a strange bug.
				*/
				!O::mask(head, tail) | elem.load_value() == BitMask::ALL
			},
			Domain::Region { head, body, tail } => {
				head.map_or(true, |(head, elem)| {
					!O::mask(head, None) | elem.load_value() == BitMask::ALL
				}) && body.iter().copied().all(|e| e == T::Mem::ALL)
					&& tail.map_or(true, |(elem, tail)| {
						!O::mask(None, tail) | elem.load_value() == BitMask::ALL
					})
			},
		}
	}

	/// Tests if *any* bit in the slice is set (logical `∨`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 1
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether any bit in the slice domain is set. The empty slice returns
	/// `false`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 0];
	/// assert!(bits[.. 2].any());
	/// assert!(!bits[2 ..].any());
	/// ```
	#[inline]
	pub fn any(&self) -> bool {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => {
				O::mask(head, tail) & elem.load_value() != BitMask::ZERO
			},
			Domain::Region { head, body, tail } => {
				head.map_or(false, |(head, elem)| {
					O::mask(head, None) & elem.load_value() != BitMask::ZERO
				}) || body.iter().copied().any(|e| e != T::Mem::ZERO)
					|| tail.map_or(false, |(elem, tail)| {
						O::mask(None, tail) & elem.load_value() != BitMask::ZERO
					})
			},
		}
	}

	/// Tests if *any* bit in the slice is unset (logical `¬∧`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 1
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self
	///
	/// # Returns
	///
	/// Whether any bit in the slice domain is unset.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 1];
	/// assert!(!bits[.. 2].not_all());
	/// assert!(bits[2 ..].not_all());
	/// ```
	#[inline]
	pub fn not_all(&self) -> bool {
		!self.all()
	}

	/// Tests if *all* bits in the slice are unset (logical `¬∨`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 1
	/// 0 1 => 0
	/// 1 0 => 0
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether all bits in the slice domain are unset.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 0];
	/// assert!(!bits[.. 2].not_any());
	/// assert!(bits[2 ..].not_any());
	/// ```
	#[inline]
	pub fn not_any(&self) -> bool {
		!self.any()
	}

	/// Tests whether the slice has some, but not all, bits set and some, but
	/// not all, bits unset.
	///
	/// This is `false` if either [`.all`] or [`.not_any`] are `true`.
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether the slice domain has mixed content. The empty slice returns
	/// `false`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let data = 0b111_000_10u8;
	/// let bits = bits![1, 1, 0, 0, 1, 0];
	///
	/// assert!(!bits[.. 2].some());
	/// assert!(!bits[2 .. 4].some());
	/// assert!(bits.some());
	/// ```
	///
	/// [`.all`]: #method.all
	/// [`.not_any`]: #method.not_any
	#[inline]
	pub fn some(&self) -> bool {
		self.any() && self.not_all()
	}

	/// Returns the number of ones in the memory region backing `self`.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of high bits in the slice domain.
	///
	/// # Examples
	///
	/// Basic usage:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 0];
	/// assert_eq!(bits[.. 2].count_ones(), 2);
	/// assert_eq!(bits[2 ..].count_ones(), 0);
	/// ```
	#[inline]
	pub fn count_ones(&self) -> usize {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => (O::mask(head, tail)
				& elem.load_value())
			.value()
			.count_ones() as usize,
			Domain::Region { head, body, tail } => {
				head.map_or(0, |(head, elem)| {
					(O::mask(head, None) & elem.load_value())
						.value()
						.count_ones() as usize
				}) + body
					.iter()
					.copied()
					.map(|e| e.count_ones() as usize)
					.sum::<usize>() + tail.map_or(0, |(elem, tail)| {
					(O::mask(None, tail) & elem.load_value())
						.value()
						.count_ones() as usize
				})
			},
		}
	}

	/// Returns the number of zeros in the memory region backing `self`.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of low bits in the slice domain.
	///
	/// # Examples
	///
	/// Basic usage:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 0];
	/// assert_eq!(bits[.. 2].count_zeros(), 0);
	/// assert_eq!(bits[2 ..].count_zeros(), 2);
	/// ```
	#[inline]
	pub fn count_zeros(&self) -> usize {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => (!O::mask(head, tail)
				| elem.load_value())
			.value()
			.count_zeros() as usize,
			Domain::Region { head, body, tail } => {
				head.map_or(0, |(head, elem)| {
					(!O::mask(head, None) | elem.load_value())
						.value()
						.count_zeros() as usize
				}) + body
					.iter()
					.copied()
					.map(|e| e.count_zeros() as usize)
					.sum::<usize>() + tail.map_or(0, |(elem, tail)| {
					(!O::mask(None, tail) | elem.load_value())
						.value()
						.count_zeros() as usize
				})
			},
		}
	}

	/// Sets all bits in the slice to a value.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `value`: The bit value to which all bits in the slice will be set.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// let bits = src.view_bits_mut::<Msb0>();
	/// bits[2 .. 6].set_all(true);
	/// assert_eq!(bits.as_slice(), &[0b0011_1100]);
	/// bits[3 .. 5].set_all(false);
	/// assert_eq!(bits.as_slice(), &[0b0010_0100]);
	/// bits[.. 1].set_all(true);
	/// assert_eq!(bits.as_slice(), &[0b1010_0100]);
	/// ```
	#[inline]
	pub fn set_all(&mut self, value: bool) {
		//  Grab the function pointers used to commit bit-masks into memory.
		let setter = <<T::Alias as BitStore>::Access>::get_writers(value);
		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => {
				//  Step three: write the bitmask through the accessor.
				setter(
					//  Step one: attach an `::Access` marker to the reference
					dvl::accessor(elem),
					//  Step two: insert an `::Alias` marker *into the bitmask*
					//  because typechecking is “fun”
					O::mask(head, tail).pipe(dvl::alias_mask::<T>),
				);
			},
			DomainMut::Region { head, body, tail } => {
				if let Some((head, elem)) = head {
					setter(
						dvl::accessor(elem),
						O::mask(head, None).pipe(dvl::alias_mask::<T>),
					);
				}
				//  loop assignment is `memset`’s problem, not ours
				unsafe {
					ptr::write_bytes(
						body.as_mut_ptr(),
						[0, !0][value as usize],
						body.len(),
					);
				}
				if let Some((elem, tail)) = tail {
					setter(
						dvl::accessor(elem),
						O::mask(None, tail).pipe(dvl::alias_mask::<T>),
					);
				}
			},
		}
	}

	/// Applies a function to each bit in the slice.
	///
	/// `BitSlice` cannot implement `IndexMut`, as it cannot manifest `&mut
	/// bool` references, and the [`BitMut`] proxy reference has an unavoidable
	/// overhead. This method bypasses both problems, by applying a function to
	/// each pair of index and value in the slice, without constructing a proxy
	/// reference.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `func`: A function which receives two arguments, `index: usize` and
	///   `value: bool`, and returns a `bool`.
	///
	/// # Effects
	///
	/// For each index in the slice, the result of invoking `func` with the
	/// index number and current bit value is written into the slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 0u8;
	/// let bits = data.view_bits_mut::<Msb0>();
	/// bits.for_each(|idx, _bit| idx % 3 == 0);
	/// assert_eq!(data, 0b100_100_10);
	/// ```
	#[inline]
	pub fn for_each<F>(&mut self, mut func: F)
	where F: FnMut(usize, bool) -> bool {
		for idx in 0 .. self.len() {
			unsafe {
				let tmp = *self.get_unchecked(idx);
				let new = func(idx, tmp);
				self.set_unchecked(idx, new);
			}
		}
	}

	/// Accesses the total backing storage of the `BitSlice`, as a slice of its
	/// elements.
	///
	/// This method produces a slice over all the memory elements it touches,
	/// using the current storage parameter. This is safe to do, as any events
	/// that would create an aliasing view into the elements covered by the
	/// returned slice will also have caused the slice to use its alias-aware
	/// type.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A view of the entire memory region this slice covers, including the edge
	/// elements.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let data = 0x3Cu8;
	/// let bits = &data.view_bits::<LocalBits>()[2 .. 6];
	///
	/// assert!(bits.all());
	/// assert_eq!(bits.len(), 4);
	/// assert_eq!(bits.as_slice(), &[0x3Cu8]);
	/// ```
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn as_slice(&self) -> &[T] {
		let bitptr = self.bitptr();
		let (base, elts) = (bitptr.pointer().to_const(), bitptr.elements());
		unsafe { slice::from_raw_parts(base, elts) }
	}

	/// Views the wholly-filled elements of the `BitSlice`.
	///
	/// This will not include partially-owned edge elements, as they may be
	/// aliased by other handles. To gain access to all elements that the
	/// `BitSlice` region covers, use one of the following:
	///
	/// - [`.as_slice`] produces a shared slice over all elements, marked
	///   aliased as appropriate.
	/// - [`.domain`] produces a view describing each component of the region,
	///   marking only the contended edges as aliased and the uncontended
	///   interior as unaliased.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A slice of all the wholly-filled elements in the `BitSlice` backing
	/// storage.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let data = [1u8, 66];
	/// let bits = data.view_bits::<Msb0>();
	///
	/// let accum = bits
	///   .as_raw_slice()
	///   .iter()
	///   .copied()
	///   .map(u8::count_ones)
	///   .sum::<u32>();
	/// assert_eq!(accum, 3);
	/// ```
	///
	/// [`.as_slice`]: #method.as_slice
	/// [`.domain`]: #method.domain
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn as_raw_slice(&self) -> &[T::Mem] {
		self.domain().region().map_or(&[], |(_, b, _)| b)
	}

	/// Views the wholly-filled elements of the `BitSlice`.
	///
	/// This will not include partially-owned edge elements, as they may be
	/// aliased by other handles. To gain access to all elements that the
	/// `BitSlice` region covers, use one of the following:
	///
	/// - [`.as_aliased_slice`] produces a shared slice over all elements,
	///   marked as aliased to allow for the possibliity of mutation.
	/// - [`.domain_mut`] produces a view describing each component of the
	///   region, marking only the contended edges as aliased and the
	///   uncontended interior as unaliased.
	///
	/// # Parameters
	///
	/// - `&mut self`
	///
	/// # Returns
	///
	/// A mutable slice of all the wholly-filled elements in the `BitSlice`
	/// backing storage.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = [1u8, 64];
	/// let bits = data.view_bits_mut::<Msb0>();
	/// for elt in bits.as_raw_slice_mut() {
	///   *elt |= 2;
	/// }
	/// assert_eq!(&[3, 66], bits.as_slice());
	/// ```
	///
	/// [`.as_aliased_slice`]: #method.as_aliased_slice
	/// [`.domain_mut`]: #method.domain_mut
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn as_raw_slice_mut(&mut self) -> &mut [T::Mem] {
		self.domain_mut().region().map_or(&mut [], |(_, b, _)| b)
	}

	/// Splits the slice into the logical components of its memory domain.
	///
	/// This produces a set of read-only subslices, marking as much as possible
	/// as affirmatively lacking any write-capable view (`T::NoAlias`). The
	/// unaliased view is able to safely perform unsynchronized reads from
	/// memory without causing undefined behavior, as the type system is able to
	/// statically prove that no other write-capable views exist.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A `BitDomain` structure representing the logical components of the
	/// memory region.
	///
	/// # Safety Exception
	///
	/// The following snippet describes a means of constructing a `T::NoAlias`
	/// view into memory that is, in fact, aliased:
	///
	/// ```rust
	/// # #[cfg(feature = "atomic")] {
	/// use bitvec::prelude::*;
	/// use core::sync::atomic::AtomicU8;
	/// type Bs<T> = BitSlice<LocalBits, T>;
	///
	/// let data = [AtomicU8::new(0), AtomicU8::new(0), AtomicU8::new(0)];
	/// let bits: &Bs<AtomicU8> = data.view_bits::<LocalBits>();
	/// let subslice: &Bs<AtomicU8> = &bits[4 .. 20];
	///
	/// let (_, noalias, _): (_, &Bs<u8>, _) =
	///   subslice.bit_domain().region().unwrap();
	/// # }
	/// ```
	///
	/// The `noalias` reference, which has memory type `u8`, assumes that it can
	/// act as an `&u8` reference: unsynchronized loads are permitted, as no
	/// handle exists which is capable of modifying the middle bit of `data`.
	/// This means that LLVM is permitted to issue loads from memory *wherever*
	/// it wants in the block during which `noalias` is live, as all loads are
	/// equivalent.
	///
	/// Use of the `bits` or `subslice` handles, which are still live for the
	/// lifetime of `noalias`, to issue [`.set_aliased`] calls into the middle
	/// element introduce **undefined behavior**. `bitvec` permits safe code to
	/// introduce this undefined behavior solely because it requires deliberate
	/// opt-in – you must start from atomic data; this cannot occur when `data`
	/// is non-atomic – and use of the shared-mutation facility simultaneously
	/// with the unaliasing view.
	///
	/// The [`.set_aliased`] method is speculative, and will be marked as
	/// `unsafe` or removed at any suspicion that its presence in the library
	/// has any costs.
	///
	/// # Examples
	///
	/// This method can be used to accelerate reads from a slice that is marked
	/// as aliased.
	///
	/// ```rust
	/// use bitvec::prelude::*;
	/// type Bs<T> = BitSlice<LocalBits, T>;
	///
	/// let bits = bits![mut LocalBits, u8; 0; 24];
	/// let (a, b): (
	///   &mut Bs<<u8 as BitStore>::Alias>,
	///   &mut Bs<<u8 as BitStore>::Alias>,
	/// ) = bits.split_at_mut(4);
	/// let (partial, full, _): (
	///   &Bs<<u8 as BitStore>::Alias>,
	///   &Bs<<u8 as BitStore>::Mem>,
	///   _,
	/// ) = b.bit_domain().region().unwrap();
	/// read_from(partial); // uses alias-aware reads
	/// read_from(full); // uses ordinary reads
	/// # fn read_from<T: BitStore>(_: &BitSlice<LocalBits, T>) {}
	/// ```
	///
	/// [`.set_aliased`]: #method.set_aliased
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn bit_domain(&self) -> BitDomain<O, T> {
		BitDomain::new(self)
	}

	/// Splits the slice into the logical components of its memory domain.
	///
	/// This produces a set of mutable subslices, marking as much as possible as
	/// affirmatively lacking any other view (`T::Mem`). The bare view is able
	/// to safely perform unsynchronized reads from and writes to memory without
	/// causing undefined behavior, as the type system is able to statically
	/// prove that no other views exist.
	///
	/// # Why This Is More Sound Than `.bit_domain`
	///
	/// The `&mut` exclusion rule makes it impossible to construct two
	/// references over the same memory where one of them is marked `&mut`. This
	/// makes it impossible to hold a live reference to memory *separately* from
	/// any references produced from this method. For the duration of all
	/// references produced by this method, all ancestor references used to
	/// reach this method call are either suspended or dead, and the compiler
	/// will not allow you to use them.
	///
	/// As such, this method cannot introduce undefined behavior where a
	/// reference incorrectly believes that the referent memory region is
	/// immutable.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn bit_domain_mut(&mut self) -> BitDomainMut<O, T> {
		BitDomainMut::new(self)
	}

	/// Splits the slice into immutable references to its underlying memory
	/// components.
	///
	/// Unlike [`.bit_domain`] and [`.bit_domain_mut`], this does not return
	/// smaller `BitSlice` handles but rather appropriately-marked references to
	/// the underlying memory elements.
	///
	/// The aliased references allow mutation of these elements. You are
	/// required to not use mutating methods on these references *at all*. This
	/// function is not marked `unsafe`, but this is a contract you must uphold.
	/// Use [`.domain_mut`] to modify the underlying elements.
	///
	/// > It is not currently possible to forbid mutation through these
	/// > references. This may change in the future.
	///
	/// # Safety Exception
	///
	/// As with [`.bit_domain`], this produces unsynchronized immutable
	/// references over the fully-populated interior elements. If this view is
	/// constructed from a `BitSlice` handle over atomic memory, then it will
	/// remove the atomic access behavior for the interior elements. This *by
	/// itself* is safe, as long as no contemporaneous atomic writes to that
	/// memory can occur. You must not retain and use an atomic reference to the
	/// memory region marked as `NoAlias` for the duration of this view’s
	/// existence.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A read-only descriptor of the memory elements backing `*self`.
	///
	/// [`.bit_domain`]: #method.bit_domain
	/// [`.bit_domain_mut`]: #method.bit_domain_mut
	/// [`.domain_mut`]: #method.domain_mut
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn domain(&self) -> Domain<T> {
		Domain::new(self)
	}

	/// Splits the slice into mutable references to its underlying memory
	/// elements.
	///
	/// Like [`.domain`], this returns appropriately-marked references to the
	/// underlying memory elements. These references are all writable.
	///
	/// The aliased edge references permit modifying memory beyond their bit
	/// marker. You are required to only mutate the region of these edge
	/// elements that you currently govern. This function is not marked
	/// `unsafe`, but this is a contract you must uphold.
	///
	/// > It is not currently possible to forbid out-of-bounds mutation through
	/// > these references. This may change in the future.
	///
	/// # Parameters
	///
	/// - `&mut self`
	///
	/// # Returns
	///
	/// A descriptor of the memory elements underneath `*self`, permitting
	/// mutation.
	///
	/// [`.domain`]: #method.domain
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn domain_mut(&mut self) -> DomainMut<T> {
		DomainMut::new(self)
	}

	/// Splits a slice at some mid-point, without checking boundary conditions.
	///
	/// This is generally not recommended; use with caution! For a safe
	/// alternative, see [`split_at`].
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `mid`: The index at which to split the slice. This must be in the
	///   range `0 .. self.len()`.
	///
	/// # Returns
	///
	/// - `.0`: `&self[.. mid]`
	/// - `.1`: `&self[mid ..]`
	///
	/// # Safety
	///
	/// This function is **not** safe. It performs raw pointer arithmetic to
	/// construct two new references. If `mid` is out of bounds, then the first
	/// slice will be too large, and the second will be *catastrophically*
	/// incorrect. As both are references to invalid memory, they are undefined
	/// to *construct*, and may not ever be used.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let data = 0x0180u16;
	/// let bits = data.view_bits::<Msb0>();
	///
	/// let (one, two) = unsafe { bits.split_at_unchecked(8) };
	/// assert!(one[7]);
	/// assert!(two[0]);
	/// ```
	///
	/// [`split_at`]: #method.split_at
	#[inline]
	pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self) {
		(self.get_unchecked(.. mid), self.get_unchecked(mid ..))
	}

	/// Splits a mutable slice at some mid-point, without checking boundary
	/// conditions.
	///
	/// This is generally not recommended; use with caution! For a safe
	/// alternative, see [`split_at_mut`].
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `mid`: The index at which to split the slice. This must be in the
	///   range `0 .. self.len()`.
	///
	/// # Returns
	///
	/// - `.0`: `&mut self[.. mid]`
	/// - `.1`: `&mut self[mid ..]`
	///
	/// # Safety
	///
	/// This function is **not** safe. It performs raw pointer arithmetic to
	/// construct two new references. If `mid` is out of bounds, then the first
	/// slice will be too large, and the second will be *catastrophically*
	/// incorrect. As both are references to invalid memory, they are undefined
	/// to *construct*, and may not ever be used.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 0u16;
	/// let bits = data.view_bits_mut::<Msb0>();
	///
	/// let (one, two) = unsafe { bits.split_at_unchecked_mut(8) };
	/// one.set(7, true);
	/// two.set(0, true);
	/// assert_eq!(data, 0x0180u16);
	/// ```
	///
	/// [`split_at_mut`]: #method.split_at_mut
	#[inline]
	#[allow(clippy::type_complexity)]
	pub unsafe fn split_at_unchecked_mut(
		&mut self,
		mid: usize,
	) -> (&mut BitSlice<O, T::Alias>, &mut BitSlice<O, T::Alias>)
	{
		let bp = self.alias_mut().bitptr();
		(
			bp.to_bitslice_mut().get_unchecked_mut(.. mid),
			bp.to_bitslice_mut().get_unchecked_mut(mid ..),
		)
	}

	/// Splits a mutable slice at some mid-point, without checking boundary
	/// conditions or adding an alias marker.
	///
	/// This method has the same behavior as [`split_at_unchecked_mut`], except
	/// that it does not apply an aliasing marker to the partitioned subslices.
	///
	/// # Safety
	///
	/// See [`split_at_unchecked_mut`] for safety requirements.
	///
	/// Additionally, this is only safe when `T` is alias-safe.
	///
	/// [`split_at_unchecked_mut`]: #method.split_at_unchecked_mut
	#[inline]
	pub(crate) unsafe fn split_at_unchecked_mut_noalias(
		&mut self,
		mid: usize,
	) -> (&mut Self, &mut Self)
	{
		//  Split the slice at the requested midpoint, adding an alias layer
		let (head, tail) = self.split_at_unchecked_mut(mid);
		//  Remove the new alias layer.
		(Self::unalias_mut(head), Self::unalias_mut(tail))
	}

	/// Swaps the bits at two indices without checking boundary conditions.
	///
	/// This is generally not recommended; use with caution! For a safe
	/// alternative, see [`swap`].
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `a`: One index to swap.
	/// - `b`: The other index to swap.
	///
	/// # Effects
	///
	/// The bit at index `a` is written into index `b`, and the bit at index `b`
	/// is written into `a`.
	///
	/// # Safety
	///
	/// Both `a` and `b` must be less than `self.len()`. Indices greater than
	/// the length will cause out-of-bounds memory access, which can lead to
	/// memory unsafety and a program crash.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 8u8;
	/// let bits = data.view_bits_mut::<Msb0>();
	///
	/// unsafe { bits.swap_unchecked(0, 4); }
	///
	/// assert_eq!(data, 128);
	/// ```
	///
	/// [`swap`]: #method.swap
	#[inline]
	pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
		let bit_a = *self.get_unchecked(a);
		let bit_b = *self.get_unchecked(b);
		self.set_unchecked(a, bit_b);
		self.set_unchecked(b, bit_a);
	}

	/// Copies a bit from one index to another without checking boundary
	/// conditions.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `from`: The index whose bit is to be copied
	/// - `to`: The index into which the copied bit is written.
	///
	/// # Effects
	///
	/// The bit at `from` is written into `to`.
	///
	/// # Safety
	///
	/// Both `from` and `to` must be less than `self.len()`, in order for
	/// `self` to legally read from and write to them, respectively.
	///
	/// If `self` had been split from a larger slice, reading from `from` or
	/// writing to `to` may not *necessarily* cause a memory-safety violation in
	/// the Rust model, due to the aliasing system `bitvec` employs. However,
	/// writing outside the bounds of a slice reference is *always* a logical
	/// error, as it causes changes observable by another reference handle.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 1u8;
	/// let bits = data.view_bits_mut::<Lsb0>();
	///
	/// unsafe { bits.copy_unchecked(0, 2) };
	///
	/// assert_eq!(data, 5);
	/// ```
	#[inline]
	pub unsafe fn copy_unchecked(&mut self, from: usize, to: usize) {
		let tmp = *self.get_unchecked(from);
		self.set_unchecked(to, tmp);
	}

	/// Copies bits from one part of the slice to another part of itself.
	///
	/// `src` is the range within `self` to copy from. `dest` is the starting
	/// index of the range within `self` to copy to, which will have the same
	/// length as `src`. The two ranges may overlap. The ends of the two ranges
	/// must be less than or equal to `self.len()`.
	///
	/// # Effects
	///
	/// `self[src]` is copied to `self[dest .. dest + src.end() - src.start()]`.
	///
	/// # Panics
	///
	/// This function will panic if either range exceeds the end of the slice,
	/// or if the end of `src` is before the start.
	///
	/// # Safety
	///
	/// Both the `src` range and the target range `dest .. dest + src.len()`
	/// must not exceed the `self.len()` slice range.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 0x07u8;
	/// let bits = data.view_bits_mut::<Msb0>();
	///
	/// unsafe { bits.copy_within_unchecked(5 .., 0); }
	///
	/// assert_eq!(data, 0xE7);
	/// ```
	#[inline]
	pub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize)
	where R: RangeBounds<usize> {
		let len = self.len();
		let rev = src.contains(&dest);
		let source = dvl::normalize_range(src, len);
		let iter = source.zip(dest .. len);
		if rev {
			for (from, to) in iter.rev() {
				self.copy_unchecked(from, to);
			}
		}
		else {
			for (from, to) in iter {
				self.copy_unchecked(from, to);
			}
		}
	}

	/// Produces the absolute offset in bits between two slice heads.
	///
	/// While this method is sound for any two arbitrary bit slices, the answer
	/// it produces is meaningful *only* when one argument is a strict subslice
	/// of the other. If the two slices are created from different buffers
	/// entirely, a comparison is undefined; if the two slices are disjoint
	/// regions of the same buffer, then the semantically correct distance is
	/// between the tail of the lower and the head of the upper, which this
	/// does not measure.
	///
	/// # Visual Description
	///
	/// Consider the following sequence of bits:
	///
	/// ```text
	/// [ 0 1 2 3 4 5 6 7 8 9 a b ]
	///   |       ^^^^^^^       |
	///   ^^^^^^^^^^^^^^^^^^^^^^^
	/// ```
	///
	/// It does not matter whether there are bits between the tail of the
	/// smaller and the larger slices. The offset is computed from the bit
	/// distance between the two heads.
	///
	/// # Behavior
	///
	/// This function computes the *semantic* distance between the heads, rather
	/// than the *electrical. It does not take into account the `BitOrder`
	/// implementation of the slice. See the [`::electrical_distance`] method
	/// for that comparison.
	///
	/// # Safety and Soundness
	///
	/// One of `self` or `other` must contain the other for this comparison to
	/// be meaningful.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `other`: Another bit slice. This must be either a strict subregion or
	///   a strict superregion of `self`.
	///
	/// # Returns
	///
	/// The distance in (semantic) bits betwen the heads of each region. The
	/// value is positive when `other` is higher in the address space than
	/// `self`, and negative when `other` is lower in the address space than
	/// `self`.
	///
	/// [`::electrical_distance]`: #method.electrical_comparison
	pub fn offset_from(&self, other: &Self) -> isize {
		let (elts, bits) = unsafe { self.bitptr().ptr_diff(other.bitptr()) };
		elts.saturating_mul(T::Mem::BITS as isize)
			.saturating_add(bits as isize)
	}

	/// Computes the electrical distance between the heads of two slices.
	///
	/// This method uses the slices’ `BitOrder` implementation to compute the
	/// bit position of their heads, then computes the shift distance, in bits,
	/// between them.
	///
	/// This computation presumes that the bits are counted in the same
	/// direction as are bytes in the abstract memory map.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `other`: Another bit slice. This must be either a strict subregion or
	///   a strict superregion of `self`.
	///
	/// # Returns
	///
	/// The electrical bit distance between the heads of `self` and `other`.
	pub fn electrical_distance(&self, other: &Self) -> isize {
		let this = self.bitptr();
		let that = other.bitptr();
		let (elts, bits) = unsafe {
			let this = BitPtr::new_unchecked(
				this.pointer(),
				BitIdx::new_unchecked(this.head().position::<O>().value()),
				1,
			);
			let that = BitPtr::new_unchecked(
				that.pointer(),
				BitIdx::new_unchecked(that.head().position::<O>().value()),
				1,
			);
			this.ptr_diff(that)
		};
		elts.saturating_mul(T::Mem::BITS as isize)
			.saturating_add(bits as isize)
	}

	/// Marks an immutable slice as referring to aliased memory region.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn alias(&self) -> &BitSlice<O, T::Alias> {
		unsafe { &*(self.as_ptr() as *const BitSlice<O, T::Alias>) }
	}

	/// Marks a mutable slice as describing an aliased memory region.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn alias_mut(&mut self) -> &mut BitSlice<O, T::Alias> {
		unsafe { &mut *(self as *mut Self as *mut BitSlice<O, T::Alias>) }
	}

	/// Removes the aliasing marker from a mutable slice handle.
	///
	/// # Safety
	///
	/// This must only be used when the slice is either known to be unaliased,
	/// or this call is combined with an operation that adds an aliasing marker
	/// and the total number of aliasing markers must remain unchanged.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) unsafe fn unalias_mut(
		this: &mut BitSlice<O, T::Alias>,
	) -> &mut Self {
		&mut *(this as *mut BitSlice<O, T::Alias> as *mut Self)
	}

	/// Type-cast the slice reference to its pointer structure.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn bitptr(&self) -> BitPtr<T> {
		BitPtr::from_bitslice_ptr(self.as_ptr())
	}

	/// Constructs a `BitSlice` over aliased memory.
	///
	/// This is restricted so that it can only be used within the crate.
	/// Construction of a `BitSlice` over externally-aliased memory is unsound.
	#[cfg(not(tarpaulin_include))]
	pub(crate) unsafe fn from_aliased_slice_unchecked(
		slice: &[T::Alias],
	) -> &BitSlice<O, T::Alias> {
		BitPtr::new_unchecked(
			slice.as_ptr(),
			BitIdx::ZERO,
			slice.len() * T::Mem::BITS as usize,
		)
		.to_bitslice_ref()
	}
}

/// Methods available only when `T` allows shared mutability.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore + Radium<Item = <T as BitStore>::Mem>,
{
	/// Splits a mutable slice at some mid-point.
	///
	/// This method has the same behavior as [`split_at_mut`], except that it
	/// does not apply an aliasing marker to the partitioned subslices.
	///
	/// # Safety
	///
	/// Because this method is defined only on `BitSlice`s whose `T` type is
	/// alias-safe, the subslices do not need to be additionally marked.
	///
	/// [`split_at_mut`]: #method.split_at_mut
	#[inline]
	//  `.split_at_mut` is already tested, and `::unalias_mut` is a noöp.
	#[cfg(not(tarpaulin_include))]
	pub fn split_at_aliased_mut(
		&mut self,
		mid: usize,
	) -> (&mut Self, &mut Self)
	{
		let (head, tail) = self.split_at_mut(mid);
		unsafe { (Self::unalias_mut(head), Self::unalias_mut(tail)) }
	}
}

/// Miscellaneous information.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// The inclusive maximum length of a `BitSlice<_, T>`.
	///
	/// As `BitSlice` is zero-indexed, the largest possible index is one less
	/// than this value.
	///
	/// |CPU word width|         Value         |
	/// |-------------:|----------------------:|
	/// |32 bits       |     `0x1fff_ffff`     |
	/// |64 bits       |`0x1fff_ffff_ffff_ffff`|
	pub const MAX_BITS: usize = BitPtr::<T>::REGION_MAX_BITS;
	/// The inclusive maximum length that a slice `[T]` can be for
	/// `BitSlice<_, T>` to cover it.
	///
	/// A `BitSlice<_, T>` that begins in the interior of an element and
	/// contains the maximum number of bits will extend one element past the
	/// cutoff that would occur if the slice began at the zeroth bit. Such a
	/// slice must be manually constructed, but will not otherwise fail.
	///
	/// |Type Bits|Max Elements (32-bit)| Max Elements (64-bit) |
	/// |--------:|--------------------:|----------------------:|
	/// |        8|    `0x0400_0001`    |`0x0400_0000_0000_0001`|
	/// |       16|    `0x0200_0001`    |`0x0200_0000_0000_0001`|
	/// |       32|    `0x0100_0001`    |`0x0100_0000_0000_0001`|
	/// |       64|    `0x0080_0001`    |`0x0080_0000_0000_0001`|
	pub const MAX_ELTS: usize = BitPtr::<T>::REGION_MAX_ELTS;
}

/** Constructs a `&BitSlice` reference from its component data.

This is logically equivalent to [`slice::from_raw_parts`] for `[T]`.

# Lifetimes

- `'a`: The lifetime of the returned bitslice handle. This must be no longer
  than the duration of the referent region, as it is illegal for references to
  dangle.

# Type Parameters

- `O`: The ordering of bits within elements `T`.
- `T`: The type of each memory element in the backing storage region.

# Parameters

- `addr`: The base address of the memory region that the `BitSlice` covers.
- `head`: The index of the first live bit in `*addr`, at which the `BitSlice`
  begins. This is required to be in the range `0 .. T::Mem::BITS`.
- `bits`: The number of live bits, beginning at `head` in `*addr`, that the
  `BitSlice` contains. This must be no greater than `BitSlice::MAX_BITS`.

# Returns

If the input parameters are valid, this returns `Some` shared reference to a
`BitSlice`. The failure conditions causing this to return `None` are:

- `head` is not less than [`T::Mem::BITS`]
- `bits` is greater than [`BitSlice::<O, T>::MAX_BITS`]
- `addr` is not adequately aligned to `T`
- `addr` is so high in the memory space that the region wraps to the base of the
  memory space

# Safety

The memory region described by the returned `BitSlice` must be validly allocated
within the caller’s memory management system. It must also not be modified for
the duration of the lifetime `'a`, unless the `T` type parameter permits safe
shared mutation.

[`BitSlice::<O, T>::MAX_BITS`]: struct.BitSlice.html#associatedconstant.MAX_BITS
[`T::Mem::BITS`]: ../mem/trait.BitMemory.html#associatedconstant.BITS
[`slice::from_raw_parts`]: https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html
**/
#[inline]
pub unsafe fn bits_from_raw_parts<'a, O, T>(
	addr: *const T,
	head: u8,
	bits: usize,
) -> Option<&'a BitSlice<O, T>>
where
	O: BitOrder,
	T: 'a + BitStore + BitMemory,
{
	let head = crate::index::BitIdx::new(head)?;
	BitPtr::new(addr, head, bits).map(BitPtr::to_bitslice_ref)
}

/** Constructs a `&mut BitSlice` reference from its component data.

This is logically equivalent to [`slice::from_raw_parts_mut`] for `[T]`.

# Lifetimes

- `'a`: The lifetime of the returned bitslice handle. This must be no longer
  than the duration of the referent region, as it is illegal for references to
  dangle.

# Type Parameters

- `O`: The ordering of bits within elements `T`.
- `T`: The type of each memory element in the backing storage region.

# Parameters

- `addr`: The base address of the memory region that the `BitSlice` covers.
- `head`: The index of the first live bit in `*addr`, at which the `BitSlice`
  begins. This is required to be in the range `0 .. T::Mem::BITS`.
- `bits`: The number of live bits, beginning at `head` in `*addr`, that the
  `BitSlice` contains. This must be no greater than `BitSlice::MAX_BITS`.

# Returns

If the input parameters are valid, this returns `Some` shared reference to a
`BitSlice`. The failure conditions causing this to return `None` are:

- `head` is not less than [`T::Mem::BITS`]
- `bits` is greater than [`BitSlice::<O, T>::MAX_BITS`]
- `addr` is not adequately aligned to `T`
- `addr` is so high in the memory space that the region wraps to the base of the
  memory space

# Safety

The memory region described by the returned `BitSlice` must be validly allocated
within the caller’s memory management system. It must also not be reachable for
the lifetime `'a` by any path other than references derived from the return
value.

[`BitSlice::<O, T>::MAX_BITS`]: struct.BitSlice.html#associatedconstant.MAX_BITS
[`T::Mem::BITS`]: ../mem/trait.BitMemory.html#associatedconstant.BITS
[`slice::from_raw_parts_mut`]: https://doc.rust-lang.org/core/slice/fn.from_raw_parts_mut.html
**/
#[inline]
pub unsafe fn bits_from_raw_parts_mut<'a, O, T>(
	addr: *mut T,
	head: u8,
	bits: usize,
) -> Option<&'a mut BitSlice<O, T>>
where
	O: BitOrder,
	T: 'a + BitStore + BitMemory,
{
	let head = crate::index::BitIdx::new(head)?;
	BitPtr::new(addr, head, bits).map(BitPtr::to_bitslice_mut)
}

mod api;
mod iter;
mod ops;
mod proxy;
mod traits;

//  Match the `core::slice` API module topology.

pub use self::{
	api::{
		from_mut,
		from_raw_parts,
		from_raw_parts_mut,
		from_ref,
		BitSliceIndex,
	},
	iter::{
		Chunks,
		ChunksExact,
		ChunksExactMut,
		ChunksMut,
		Iter,
		IterMut,
		RChunks,
		RChunksExact,
		RChunksExactMut,
		RChunksMut,
		RSplit,
		RSplitMut,
		RSplitN,
		RSplitNMut,
		Split,
		SplitMut,
		SplitN,
		SplitNMut,
		Windows,
	},
	proxy::BitMut,
};

#[cfg(test)]
mod tests;