1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
//! Constructor macros for the crate’s collection types.

#[macro_use]
#[doc(hidden)]
pub mod internal;

/** Constructs a `BitSlice` handle out of a literal array in source code, like
`vec!`.

`bits!` can be invoked in a number of ways. It takes the name of a `BitOrder`
implementation, the name of a `BitStore`-implementing core type (which can be
any of the fundamental integers, their `Cell` wrappers, or their `Atomic`
sibling types), and zero or more expressions which are used to build the bits.
Each value expression corresponds to one bit. If the expression evaluates to
`0`, it is the zero bit; otherwise, it is the `1` bit.

`bits!` can be invoked with no type specifiers, a `BitOrder` specifier only, or
both a `BitOrder` and a `BitStore` specifier. It cannot be invoked with a
`BitStore` but no `BitOrder`, as the macro grammar is incapable of
distinguishing between these two.

In addition, a `mut` marker may be used as the first argument to produce an
`&mut BitSlice` handle instead of a `&BitSlice` handle.

Like `vec!`, `bits!` supports bit lists `[0, 1, …]` and repetition markers
`[1; n]`.

# Examples

```rust
use bitvec::prelude::*;

bits![Msb0, u8; 0, 1];
bits![mut Lsb0, u8; 0, 1,];
bits![Msb0; 0, 1];
bits![mut Lsb0; 0, 1,];
bits![0, 1];
bits![mut 0, 1,];
bits![0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0];
bits![Msb0, u8; 1; 5];
bits![mut Lsb0; 0; 5];
bits![1; 5];
bits![mut LocalBits; 0, 1,];
```
**/
#[macro_export]
macro_rules! bits {
	//  Sequence syntax `[bit (, bit)*]` or `[(bit ,)*]`.

	//  Explicit order and store.

	(mut $order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		&mut $crate::bitarr![$order, $store; $($val),*][.. $crate::__count!($($val),*)]
	}};

	/* These arms differ in `$order:ident` and `$order:path` in order to force
	the matcher to wrap a `:path`, which is `[:tt]`, as a single opaque `:tt`
	for propagation through the macro call. Since the literal `$order` values
	will match as `:ident`, not `:path`, this will only ever enter for orderings
	that the rest of the macros would not be able to inspect and special-case
	*anyway*.
	*/

	(mut $order:path, $store:ident; $($val:expr),* $(,)?) => {{
		&mut $crate::bitarr![$order, $store; $($val),*][.. $crate::__count!($($val),*)]
	}};

	//  Explicit order, default store.

	(mut $order:ident; $($val:expr),* $(,)?) => {
		unsafe { $crate::bits!(mut $order, usize; $($val),*) }
	};

	(mut $order:path; $($val:expr),* $(,)?) => {
		unsafe { $crate::bits!(mut $order, usize; $($val),*) }
	};

	//  Default order and store.

	(mut $($val:expr),* $(,)?) => {
		unsafe { $crate::bits!(mut Lsb0, usize; $($val),*) }
	};

	//  Repetition syntax `[bit ; count]`.
	//  NOTE: `count` must be a `const`, as this is a non-allocating macro.

	//  Explicit order and store.

	(mut $order:ident, $store:ident; $val:expr; $len:expr) => {{
		&mut $crate::bitarr![$order, $store; $val; $len][.. $len]
	}};

	(mut $order:path, $store:ident; $val:expr; $len:expr) => {{
		&mut $crate::bitarr![$order, $store; $val; $len][.. $len]
	}};

	//  Explicit order, default store.

	(mut $order:ident; $val:expr; $len:expr) => {
		$crate::bits!(mut $order, usize; $val; $len)
	};

	(mut $order:path; $val:expr; $len:expr) => {
		$crate::bits!(mut $order, usize; $val; $len)
	};

	//  Default order and store.

	(mut $val:expr; $len:expr) => {
		$crate::bits!(mut Lsb0, usize; $val; $len)
	};

	//  Repeat everything from above, but now immutable.

	($order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		&$crate::bitarr![$order, $store; $($val),*][.. $crate::__count!($($val),*)]
	}};

	($order:path, $store:ident; $($val:expr),* $(,)?) => {{
		&$crate::bitarr![$order, $store; $($val),*][.. $crate::__count!($($val),*)]
	}};

	($order:ident; $($val:expr),* $(,)?) => {
		$crate::bits!($order, usize; $($val),*)
	};

	($order:path; $($val:expr),* $(,)?) => {
		$crate::bits!($order, usize; $($val),*)
	};

	($($val:expr),* $(,)?) => {
		$crate::bits!(Lsb0, usize; $($val),*)
	};

	($order:ident, $store:ident; $val:expr; $len:expr) => {{
		&$crate::bitarr![$order, $store; $val; $len][.. $len]
	}};

	($order:path, $store:ident; $val:expr; $len:expr) => {{
		&$crate::bitarr![$order, $store; $val; $len][.. $len]
	}};

	($order:ident; $val:expr; $len:expr) => {
		$crate::bits!($order, usize; $val; $len)
	};

	($order:path; $val:expr; $len:expr) => {
		$crate::bits!($order, usize; $val; $len)
	};

	($val:expr; $len:expr) => {
		$crate::bits!(Lsb0, usize; $val; $len)
	};
}

/** Constructs a `BitArray` wrapper out of a literal array in source code, like
`bits!`

As with all macro constructors, `bitarr!` can be invoked with either a sequence
of individual bit expressions (`expr, expr`) or a repeated bit (`expr; count`).
Additionally, the bit-ordering and element type can be provided as optional
prefix arguments.

The produced value is of type `BitArray<O, [T; N]>`, and is subject to
[`BitArray`]’s restricitons of element `T` length `N`. For instance, attempting
to produce a bit array that fills more than 32 `T` elements will fail.

In addition, `bitarr!` can be used to produce a type name instead of a value by
using the syntax `bitarr!(for N [, in [O,] T])`. This syntax allows the
production of a monomorphized `BitArray<O, V>` type that is capable of holding
`N` bits. It can be used to type static sites such as `struct` fields and
`const` or `static` declarations, and in these positions must specify both type
arguments as well as the length. It can also be used to type `let`-bindings, but
as type inference is permitted here, it is less useful in this position.

# Examples

```rust
use bitvec::prelude::*;

bitarr![Msb0, u8; 0, 1];
bitarr![Msb0; 0, 1];
bitarr![0, 1];
bitarr![0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0];
bitarr![Msb0, u8; 1; 5];
bitarr![1; 5];
```

This example shows how the `for N, in O, T` syntax can be used to type locations
that cannot use inference:

```rust
use bitvec::prelude::*;

struct ContainsBitfield {
  data: bitarr!(for 10, in Msb0, u8),
}

fn zero() -> ContainsBitfield {
  ContainsBitfield { data: bitarr![Msb0, u8; 0; 10] }
}
```

The order/store type parameters must be repeated in the macros to construct both
the typename and the value. Mismatches will result in a compiler error.
**/
#[macro_export]
macro_rules! bitarr {
	//  Produces a typename instead of a value expression

	(for $len:literal, in $order:path, $store:ident) => {
		$crate::array::BitArray::<
			$order,
			[$store; $crate::mem::elts::<$store>($len)],
		>
	};

	(for $len:literal, in $store:ident) => {
		$crate::bitarr!(for $len, in $crate::order::Lsb0, usize)
	};

	(for $len:literal) => {
		$crate::bitarr!(for $len, in usize)
	};

	//  Produces a value expression

	($order:ident, $store:ident; $($val:expr),* $(,)?) => {
		$crate::array::BitArray::<
			$order,
			[$store; $crate::__count_elts!($store; $($val),*)],
		>::new(
			$crate::__bits_store_array!($order, $store; $($val),*)
		)
	};

	($order:path, $store:ident; $($val:expr),* $(,)?) => {
		$crate::array::BitArray::<
			$order,
			[$store; $crate::__count_elts!($store; $($val),*)],
		>::new(
			$crate::__bits_store_array!($order, $store; $($val),*)
		)
	};

	($order:ident; $($val:expr),* $(,)?) => {
		$crate::bitarr!($order, usize; $($val),*)
	};

	($order:path; $($val:expr),* $(,)?) => {
		$crate::bitarr!($order, usize; $($val),*)
	};

	($($val:expr),* $(,)?) => {
		$crate::bitarr!(Lsb0, usize; $($val),*)
	};

	($order:ident, $store:ident; $val:expr; $len:expr) => {
		$crate::array::BitArray::<
			$order,
			[$store; $crate::mem::elts::<$store>($len)],
		>::new([
			$crate::__extend_bool!($val, $store);
			$crate::mem::elts::<$store>($len)
		])
	};

	($order:path, $store:ident; $val:expr; $len:expr) => {
		$crate::array::BitArray::<
			$order,
			[$store; $crate::mem::elts::<$store>($len)],
		>::new([
			$crate::__extend_bool!($val, $store);
			$crate::mem::elts::<$store>($len)
		])
	};

	($order:ident; $val:expr; $len:expr) => {
		$crate::bitarr!($order, usize; $val; $len)
	};

	($order:path; $val:expr; $len:expr) => {
		$crate::bitarr!($order, usize; $val; $len)
	};

	($val:expr; $len:expr) => {
		$crate::bitarr!(Lsb0, usize; $val; $len)
	};
}

/** Constructs a `BitVec` out of a literal array in source code, like `vec!`.

`bitvec!` can be invoked in a number of ways. It takes the name of a `BitOrder`
implementation, the name of a `BitStore`-implementing fundamental, and zero or
more fundamentals (integer, floating-point, or boolean) which are used to build
the bits. Each fundamental literal corresponds to one bit, and is considered to
represent `1` if it is any other value than exactly zero.

`bitvec!` can be invoked with no specifiers, a `BitOrder` specifier, or a
`BitOrder` and a `BitStore` specifier. It cannot be invoked with a `BitStore`
specifier but no `BitOrder` specifier, due to overlap in how those tokens are
matched by the macro system.

Like `vec!`, `bitvec!` supports bit lists `[0, 1, …]` and repetition markers
`[1; n]`.

# Examples

```rust
use bitvec::prelude::*;

bitvec![Msb0, u8; 0, 1];
bitvec![Lsb0, u8; 0, 1,];
bitvec![Msb0; 0, 1];
bitvec![Lsb0; 0, 1,];
bitvec![0, 1];
bitvec![0, 1,];
bitvec![Msb0, u8; 1; 5];
bitvec![Lsb0; 0; 5];
bitvec![1; 5];
```
**/
#[macro_export]
#[cfg(feature = "alloc")]
macro_rules! bitvec {
	//  First, capture the repetition syntax, as it is permitted to use runtime
	//  values for the repetition count.
	($order:ty, $store:ident; $val:expr; $rep:expr) => {
		$crate::vec::BitVec::<$order, $store>::repeat($val != 0, $rep)
	};

	($order:ty; $val:expr; $rep:expr) => {
		$crate::vec::BitVec::<$order, usize>::repeat($val != 0, $rep)
	};

	($val:expr; $rep:expr) => {
		$crate::vec::BitVec::<$crate::order::Lsb0, usize>::repeat($val != 0, $rep)
	};

	//  Delegate all others to the `bits!` macro.
	($($arg:tt)*) => {{
		$crate::vec::BitVec::from_bitslice($crate::bits!($($arg)*))
	}};
}

/** Constructs a `BitBox` out of a literal array in source code, like `bitvec!`.

This has exactly the same syntax as [`bitvec!`], and in fact is a thin wrapper
around `bitvec!` that calls `.into_boxed_slice()` on the produced `BitVec` to
freeze it.

[`bitvec!`]: #macro.bitvec
**/
#[macro_export]
#[cfg(feature = "alloc")]
macro_rules! bitbox {
	($($arg:tt)*) => {
		$crate::bitvec!($($arg)*).into_boxed_bitslice()
	};
}

#[cfg(test)]
mod tests {
	#[allow(unused_imports)]
	use crate::order::{
		Lsb0,
		Msb0,
	};

	#[test]
	#[cfg(feature = "alloc")]
	fn compile_bits_macros() {
		bits![0, 1];
		bits![Msb0; 0, 1];
		bits![Lsb0; 0, 1];
		bits![Msb0, u8; 0, 1];
		bits![Lsb0, u8; 0, 1];
		bits![Msb0, u16; 0, 1];
		bits![Lsb0, u16; 0, 1];
		bits![Msb0, u32; 0, 1];
		bits![Lsb0, u32; 0, 1];

		#[cfg(target_pointer_width = "64")]
		{
			bits![Msb0, u64; 0, 1];
			bits![Lsb0, u64; 0, 1];
		}

		bits![1; 70];
		bits![Msb0; 0; 70];
		bits![Lsb0; 1; 70];
		bits![Msb0, u8; 0; 70];
		bits![Lsb0, u8; 1; 70];
		bits![Msb0, u16; 0; 70];
		bits![Lsb0, u16; 1; 70];
		bits![Msb0, u32; 0; 70];
		bits![Lsb0, u32; 1; 70];

		#[cfg(target_pointer_width = "64")]
		{
			bits![Msb0, u64; 0; 70];
			bits![Lsb0, u64; 1; 70];
		}
	}

	#[test]
	#[cfg(feature = "alloc")]
	fn compile_bitvec_macros() {
		bitvec![0, 1];
		bitvec![Msb0; 0, 1];
		bitvec![Lsb0; 0, 1];
		bitvec![Msb0, u8; 0, 1];
		bitvec![Lsb0, u8; 0, 1];
		bitvec![Msb0, u16; 0, 1];
		bitvec![Lsb0, u16; 0, 1];
		bitvec![Msb0, u32; 0, 1];
		bitvec![Lsb0, u32; 0, 1];

		#[cfg(target_pointer_width = "64")]
		{
			bitvec![Msb0, u64; 0, 1];
			bitvec![Lsb0, u64; 0, 1];
		}

		bitvec![1; 70];
		bitvec![Msb0; 0; 70];
		bitvec![Lsb0; 1; 70];
		bitvec![Msb0, u8; 0; 70];
		bitvec![Lsb0, u8; 1; 70];
		bitvec![Msb0, u16; 0; 70];
		bitvec![Lsb0, u16; 1; 70];
		bitvec![Msb0, u32; 0; 70];
		bitvec![Lsb0, u32; 1; 70];

		#[cfg(target_pointer_width = "64")]
		{
			bitvec![Msb0, u64; 0; 70];
			bitvec![Lsb0, u64; 1; 70];
		}
	}

	#[test]
	#[cfg(feature = "alloc")]
	fn compile_bitbox_macros() {
		bitbox![0, 1];
		bitbox![Msb0; 0, 1];
		bitbox![Lsb0; 0, 1];
		bitbox![Msb0, u8; 0, 1];
		bitbox![Lsb0, u8; 0, 1];
		bitbox![Msb0, u16; 0, 1];
		bitbox![Lsb0, u16; 0, 1];
		bitbox![Msb0, u32; 0, 1];
		bitbox![Lsb0, u32; 0, 1];

		#[cfg(target_pointer_width = "64")]
		{
			bitbox![Msb0, u64; 0, 1];
			bitbox![Lsb0, u64; 0, 1];
		}

		bitbox![1; 70];
		bitbox![Msb0; 0; 70];
		bitbox![Lsb0; 1; 70];
		bitbox![Msb0, u8; 0; 70];
		bitbox![Lsb0, u8; 1; 70];
		bitbox![Msb0, u16; 0; 70];
		bitbox![Lsb0, u16; 1; 70];
		bitbox![Msb0, u32; 0; 70];
		bitbox![Lsb0, u32; 1; 70];

		#[cfg(target_pointer_width = "64")]
		{
			bitbox![Msb0, u64; 0; 70];
			bitbox![Lsb0, u64; 1; 70];
		}
	}
}