1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2017 Brian Langenberger
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Traits and implementations for reading or writing Huffman codes
//! from or to a stream.

use std::fmt;
use std::collections::BTreeMap;

pub enum ReadHuffmanTree<T: Clone> {
    Leaf(T),
    Tree(Box<ReadHuffmanTree<T>>, Box<ReadHuffmanTree<T>>)
}

impl<T: Clone> ReadHuffmanTree<T> {
    /// Given a vector of symbol/code pairs, compiles a Huffman tree
    /// for reading.
    /// Code must be 0 or 1 bits and are always consumed from the stream
    /// from least-significant in the list to most signficant
    /// (which makes them easier to read for humans).
    ///
    /// Each code in the tree must be unique, but symbols may occur
    /// multiple times.  All possible codes must be assigned some symbol.
    ///
    /// ## Example 1
    /// ```
    /// use bitstream_io::huffman::ReadHuffmanTree;
    /// assert!(ReadHuffmanTree::new(vec![(1i32, vec![0]),
    ///                                   (2i32, vec![1, 0]),
    ///                                   (3i32, vec![1, 1])]).is_ok());
    /// ```
    ///
    /// ## Example 2
    /// Note how the `1 0` code has no symbol, so this tree cannot be
    /// built for reading.
    ///
    /// ```
    /// use bitstream_io::huffman::ReadHuffmanTree;
    /// assert!(ReadHuffmanTree::new(vec![(1i32, vec![0]),
    ///                                   (3i32, vec![1, 1])]).is_err());
    /// ```
    pub fn new(values: Vec<(T, Vec<u8>)>) ->
        Result<ReadHuffmanTree<T>,HuffmanTreeError> {
        let mut tree = WipHuffmanTree::new_empty();

        for (symbol, code) in values.into_iter() {
            tree.add(code.as_slice(), symbol)?;
        }

        tree.into_read_tree()
    }
}

// Work-in-progress trees may have empty nodes during construction
// but those are not allowed in a finalized tree.
// If the user wants some codes to be None or an error symbol of some sort,
// those will need to be specified explicitly.
enum WipHuffmanTree<T: Clone> {
    Empty,
    Leaf(T),
    Tree(Box<WipHuffmanTree<T>>, Box<WipHuffmanTree<T>>)
}

impl<T: Clone> WipHuffmanTree<T> {
    fn new_empty() -> WipHuffmanTree<T> {
        WipHuffmanTree::Empty
    }

    fn new_leaf(value: T) -> WipHuffmanTree<T> {
        WipHuffmanTree::Leaf(value)
    }

    fn new_tree() -> WipHuffmanTree<T> {
        WipHuffmanTree::Tree(Box::new(Self::new_empty()),
                             Box::new(Self::new_empty()))
    }

    fn into_read_tree(self) -> Result<ReadHuffmanTree<T>,HuffmanTreeError> {
        match self {
            WipHuffmanTree::Empty => {
                Err(HuffmanTreeError::MissingLeaf)
            }
            WipHuffmanTree::Leaf(v) => {
                Ok(ReadHuffmanTree::Leaf(v))
            }
            WipHuffmanTree::Tree(zero, one) => {
                let zero = zero.into_read_tree()?;
                let one = one.into_read_tree()?;
                Ok(ReadHuffmanTree::Tree(Box::new(zero), Box::new(one)))
            }
        }
    }

    fn add(&mut self, code: &[u8], symbol: T) -> Result<(),HuffmanTreeError> {
        match self {
            &mut WipHuffmanTree::Empty => {
                if code.len() == 0 {
                    *self = WipHuffmanTree::new_leaf(symbol);
                    Ok(())
                } else {
                    *self = WipHuffmanTree::new_tree();
                    self.add(code, symbol)
                }
            }
            &mut WipHuffmanTree::Leaf(_) => {
                Err(if code.len() == 0 {
                    HuffmanTreeError::DuplicateLeaf
                } else {
                    HuffmanTreeError::OrphanedLeaf
                })
            }
            &mut WipHuffmanTree::Tree(ref mut zero, ref mut one) => {
                if code.len() == 0 {
                    Err(HuffmanTreeError::DuplicateLeaf)
                } else {
                    match code[0] {
                        0 => {zero.add(&code[1..], symbol)}
                        1 => {one.add(&code[1..], symbol)}
                        _ => {Err(HuffmanTreeError::InvalidBit)}
                    }
                }
            }
        }
    }
}

#[derive(PartialEq, Copy, Clone, Debug)]
pub enum HuffmanTreeError {
    InvalidBit,
    MissingLeaf,
    DuplicateLeaf,
    OrphanedLeaf
}

impl fmt::Display for HuffmanTreeError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            HuffmanTreeError::InvalidBit => {
                write!(f, "invalid bit in specification")
            }
            HuffmanTreeError::MissingLeaf => {
                write!(f, "missing leaf node in specification")
            }
            HuffmanTreeError::DuplicateLeaf => {
                write!(f, "duplicate leaf node in specification")
            }
            HuffmanTreeError::OrphanedLeaf => {
                write!(f, "orphaned leaf node in specification")
            }
        }
    }
}

pub struct WriteHuffmanTree<T: Ord> {
    big_endian: BTreeMap<T,(u32,u64)>,
    little_endian: BTreeMap<T,(u32,u64)>
}

impl<T: Ord + Clone> WriteHuffmanTree<T> {
    /// Given a vector of symbol/code pairs, compiles a Huffman tree
    /// for writing.
    /// Code must be 0 or 1 bits and are always written to the stream
    /// from least-significant in the list to most signficant
    /// (which makes them easier to read for humans).
    ///
    /// If the same symbol occurs multiple times, the first code is used.
    /// Unlike in read trees, not all possible codes need to be
    /// assigned a symbol.
    ///
    /// ## Example
    /// ```
    /// use bitstream_io::huffman::WriteHuffmanTree;
    /// assert!(WriteHuffmanTree::new(vec![(1i32, vec![0]),
    ///                                    (2i32, vec![1, 0]),
    ///                                    (3i32, vec![1, 1])]).is_ok());
    /// ```
    pub fn new(values: Vec<(T, Vec<u8>)>) ->
        Result<WriteHuffmanTree<T>,HuffmanTreeError> {
        use super::{BitQueueBE, BitQueueLE, BitQueue};

        // This current implementation is limited to Huffman codes
        // that generate up to 64 bits.  It may need to be updated
        // if I can find anything larger.

        let mut big_endian = BTreeMap::new();
        let mut little_endian = BTreeMap::new();

        for (symbol, code) in values.into_iter() {
            let mut be_encoded = BitQueueBE::new();
            let mut le_encoded = BitQueueLE::new();
            let code_len = code.len() as u32;
            for bit in code {
                if (bit != 0) && (bit != 1) {
                    return Err(HuffmanTreeError::InvalidBit);
                }
                be_encoded.push(1, bit as u64);
                le_encoded.push(1, bit as u64);
            }
            big_endian.entry(symbol.clone())
                      .or_insert((code_len, be_encoded.value()));
            little_endian.entry(symbol)
                         .or_insert((code_len, le_encoded.value()));
        }

        Ok(WriteHuffmanTree{big_endian: big_endian,
                            little_endian: little_endian})
    }

    /// Returns true if symbol is in tree.
    pub fn has_symbol(&self, symbol: T) -> bool {
        self.big_endian.contains_key(&symbol)
    }

    /// Given symbol, returns big-endian (bits, value) pair
    /// for writing code.  Panics if symbol is not found.
    pub fn get_be(&self, symbol: T) -> (u32, u64) {
        self.big_endian[&symbol]
    }

    /// Given symbol, returns little-endian (bits, value) pair
    /// for writing code.  Panics if symbol is not found.
    pub fn get_le(&self, symbol: T) -> (u32, u64) {
        self.little_endian[&symbol]
    }
}