1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use std::mem;
use std::ops::{BitAnd, Shr};

/// Implementation detail: simply extends the integer primitives so they have a
/// static method that returns a 1 of the specific integer type.
pub trait One {
	fn one() -> Self;
}

macro_rules! impl_one {
	($($type:ty)+) => {
		$(impl One for $type {
			#[inline]
			fn one() -> $type {
				1
			}
		})+
	};
}

impl_one!(u8 u16 u32 u64 u128 usize);
impl_one!(i8 i16 i32 i64 i128 isize);

/// This trait takes a generator of integers and transforms it into a stream of
/// the bits that compose each of them. This crate already implements it for all
/// integer types, so it only needs to be brought into scope via
/// `use bitsreader::AsBits`.
///
/// If it were to be implemented by some custom numeric type, the trait
/// [One](./trait.One.html) must be implemented for it.
pub trait AsBits {
	type Iter: Iterator;

	/// Transforms an iterator of integers into a stream of the bits that
	/// compose each of them.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitsreader::AsBits;
	///
	/// let mut bits = [0b1011_0101u8, 0b0100_1110].iter().as_bits();
	/// assert_eq!(bits.next(), Some(1));
	/// assert_eq!(bits.next(), Some(0));
	/// assert_eq!(bits.nth(6), Some(0)); // The next byte
	/// assert_eq!(bits.nth(6), Some(0)); // The last bit
	/// assert_eq!(bits.next(), None);
	/// assert_eq!(bits.next_back(), Some(0)); // It's also double-ended!
	/// ```
	fn as_bits(self) -> Bits<Self::Iter>;
}

#[derive(Clone)]
pub struct Bits<I>
where
	I: Iterator,
{
	unit: I::Item,
	shift: usize,
	source: I,
	rev_unit: I::Item,
	rev_shift: usize,
	rev_source: I,
}

impl<I, T> Bits<I>
where
	Self: Iterator,
	<Self as Iterator>::Item: PartialEq + One,
	I: Iterator<Item = T> + DoubleEndedIterator + Clone,
	T: Default,
{
	fn new(mut source: I) -> Self {
		let mut rev_source = source.clone();
		let rev_unit = rev_source.next_back().unwrap_or_default();
		let unit = source.next().unwrap_or_default();
		let size = mem::size_of::<T>() * 8;
		Bits {
			unit,
			shift: size,
			source,
			rev_unit,
			rev_shift: 0,
			rev_source,
		}
	}

	// There's seemingly no difference in keeping the size in memory and
	// calculating it each time, so might as well lower the memory footprint!
	#[inline]
	fn unit_size(&self) -> usize {
		mem::size_of::<T>() * 8
	}

	/// Returns the next `n` as `Some<usize>`. If there aren't enough bits in the
	/// stream, returns `None` instead. This, otherwise, makes no guarantees in
	/// regards to the size of `n`, meaning that if `usize` is 64-bits long and
	/// `n` equals 65, some information might be lost.
	///
	/// It should be noted that this advances the internal state of the iterator.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitsreader::AsBits;
	///
	/// let mut bit_stream = [0b1100u8].iter().as_bits();
	/// assert_eq!(bit_stream.get_bits(4), Some(0));
	/// assert_eq!(bit_stream.get_bits(2), Some(3)); // 0b11
	/// assert_eq!(bit_stream.get_bits(3), None);
	/// ```
	pub fn get_bits(&mut self, n: usize) -> Option<usize> {
		let mut bits = 0;
		for _ in 0..n {
			let bit = self.next()?;
			bits <<= 1;
			bits |= if bit == <Self as Iterator>::Item::one() {
				1
			} else {
				0
			};
		}
		Some(bits)
	}
}

impl<I, T, S, B> Iterator for Bits<I>
where
	I: Iterator<Item = T> + DoubleEndedIterator + Clone,
	T: Copy + Default + Shr<usize, Output = S>,
	S: BitAnd<S, Output = B> + One,
	B: PartialEq + One,
{
	type Item = B;

	fn next(&mut self) -> Option<Self::Item> {
		if self.shift == 0 {
			self.unit = self.source.next()?;
			self.shift = self.unit_size();
		}
		self.shift -= 1;
		Some((self.unit >> self.shift) & S::one())
	}

	fn size_hint(&self) -> (usize, Option<usize>) {
		let (lo, up) = self.source.size_hint();
		let lo = lo.saturating_mul(self.unit_size());
		let up = up.and_then(|bound| bound.checked_mul(self.unit_size()));
		(lo, up)
	}
}

impl<I, T, S, B> DoubleEndedIterator for Bits<I>
where
	I: Iterator<Item = T> + DoubleEndedIterator + Clone,
	T: Copy + Default + Shr<usize, Output = S>,
	S: BitAnd<S, Output = B> + One,
	B: PartialEq + One,
{
	fn next_back(&mut self) -> Option<Self::Item> {
		if self.rev_shift == self.unit_size() {
			self.rev_unit = self.rev_source.next_back()?;
			self.rev_shift = 0;
		}
		let bit = (self.rev_unit >> self.rev_shift) & S::one();
		self.rev_shift += 1;
		Some(bit)
	}
}

impl<'a, I, T, S, B> AsBits for I
where
	I: Iterator<Item = &'a T> + DoubleEndedIterator + Clone,
	T: 'a + Copy + Default + Shr<usize, Output = S>,
	S: BitAnd<S, Output = B> + One,
	B: PartialEq + One,
{
	type Iter = std::iter::Copied<Self>;

	fn as_bits(self) -> Bits<Self::Iter> {
		Bits::new(self.copied())
	}
}

#[cfg(test)]
mod tests {
	use super::AsBits;

	#[test]
	fn test_unsigned_bytes() {
		let bytes = [0b1100_1000u8, 0b0101_0110];
		let bits = bytes.iter().as_bits();
		let rev_bits = bytes.iter().as_bits().rev();
		let mut all_bits = vec![1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0];
		assert_eq!(bits.collect::<Vec<_>>(), all_bits);
		all_bits.reverse();
		assert_eq!(rev_bits.collect::<Vec<_>>(), all_bits);
	}

	#[test]
	fn test_unsigned_multi_bytes() {
		let bytes = [0b1100_1000_0101_0110u16];
		let bits = bytes.iter().as_bits();
		let rev_bits = bytes.iter().as_bits().rev();
		let mut all_bits = vec![1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0];
		assert_eq!(bits.collect::<Vec<_>>(), all_bits);
		all_bits.reverse();
		assert_eq!(rev_bits.collect::<Vec<_>>(), all_bits);
	}

	#[test]
	fn test_signed_bytes() {
		let bytes = [0b0000_1100i8, 0b0000_1000];
		let bits = bytes.iter().as_bits();
		let rev_bits = bytes.iter().as_bits().rev();
		let mut all_bits = vec![0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0];
		assert_eq!(bits.collect::<Vec<_>>(), all_bits);
		all_bits.reverse();
		assert_eq!(rev_bits.collect::<Vec<_>>(), all_bits);
	}

	#[test]
	fn test_signed_multi_bytes() {
		let bytes = [0b0000_0000_1100_1000i16];
		let bits = bytes.iter().as_bits();
		let rev_bits = bytes.iter().as_bits().rev();
		let mut all_bits = vec![0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0];
		assert_eq!(bits.collect::<Vec<_>>(), all_bits);
		all_bits.reverse();
		assert_eq!(rev_bits.collect::<Vec<_>>(), all_bits);
	}
}