1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
use super::{BitPacker, UnsafeBitPacker};

#[cfg(target_arch = "x86_64")]
use Available;

const BLOCK_LEN: usize = 32 * 8;

#[cfg(target_arch="x86_64")]
mod avx2 {

    use super::BLOCK_LEN;
    use Available;

    use std::arch::x86_64::__m256i as DataType;
    use std::arch::x86_64::_mm256_set1_epi32 as set1;
    use std::arch::x86_64::_mm256_srli_epi32 as right_shift_32;
    use std::arch::x86_64::_mm256_slli_epi32 as left_shift_32;
    use std::arch::x86_64::_mm256_or_si256 as op_or;
    use std::arch::x86_64::_mm256_and_si256 as op_and;
    use std::arch::x86_64::_mm256_lddqu_si256 as load_unaligned;
    use std::arch::x86_64::_mm256_storeu_si256 as store_unaligned;

    use std::arch::x86_64::{_mm256_permute2f128_si256, _mm256_extract_epi32, _mm256_sub_epi32, _mm256_add_epi32, _mm256_srli_si256, _mm256_slli_si256, _mm256_shuffle_epi32};

    #[allow(non_snake_case)]
    unsafe fn or_collapse_to_u32(accumulator: DataType) -> u32 {
        let a__b__c__d__e__f__g__h_ = accumulator;
        let ______a__b__c__d__e__f = _mm256_srli_si256(a__b__c__d__e__f__g__h_, 8);
        let a__b__ca_db_ce_df_ge_hf = op_or(a__b__c__d__e__f__g__h_, ______a__b__c__d__e__f);
        let ___a__b__ca_db_ce_df_ge = _mm256_srli_si256(a__b__ca_db_ce_df_ge_hf, 4);
        let _________cadb_________gehf = op_or(a__b__ca_db_ce_df_ge_hf, ___a__b__ca_db_ce_df_ge);
        let cadb = _mm256_extract_epi32(_________cadb_________gehf, 4);
        let gehf = _mm256_extract_epi32(_________cadb_________gehf, 4);
        (cadb | gehf) as u32
    }

    unsafe fn compute_delta(curr: DataType, prev: DataType) -> DataType {
        let left_shift = _mm256_slli_si256(curr, 4);
        let curr_shift = _mm256_srli_si256(curr, 12);
        let curr_right_only = _mm256_permute2f128_si256(curr_shift, curr_shift, 8);
        let prev_shift = _mm256_srli_si256(prev, 12);
        let sub_left = _mm256_permute2f128_si256(prev_shift, prev_shift, 3 | (8 << 4));
        let diff = op_or(left_shift, op_or(curr_right_only, sub_left));
        _mm256_sub_epi32(curr, diff)
    }

    #[allow(non_snake_case)]
    unsafe fn integrate_delta(prev: DataType, delta: DataType) -> DataType {
        // There is a probably a better way to implement this...
        let offset_repeat = _mm256_shuffle_epi32(prev, 0xff);
        let offset = _mm256_permute2f128_si256(offset_repeat, offset_repeat, 3 | (8 << 4));
        let a__b__c__d__e__f__g__h__ = delta;
        let ______a__b________e__f__ = _mm256_slli_si256(delta, 8);
        let a__b__ca_db_e__f__ge_fh_ = _mm256_add_epi32(a__b__c__d__e__f__g__h__, ______a__b________e__f__);
        let ___a__b__ca____e__f__ge_ = _mm256_slli_si256(a__b__ca_db_e__f__ge_fh_, 4);
        let halved_prefix_sum = _mm256_add_epi32(___a__b__ca____e__f__ge_, a__b__ca_db_e__f__ge_fh_);
        let offseted_halved_prefix_sum = _mm256_add_epi32(halved_prefix_sum, offset);
        let select_last_low = _mm256_shuffle_epi32(offseted_halved_prefix_sum, 0xff);
        let high_offset = _mm256_permute2f128_si256(select_last_low, select_last_low, 8 | 0);
        _mm256_add_epi32(high_offset, offseted_halved_prefix_sum)
    }

    declare_bitpacker!(target_feature(enable="avx2"));

    impl Available for UnsafeBitPackerImpl {
        fn available() -> bool {
            is_x86_feature_detected!("avx2")
        }
    }
}


mod scalar {

    use super::BLOCK_LEN;
    use Available;

    type DataType = [u32; 8];


    fn set1(el: i32) -> DataType {
        [el as u32; 8]
    }

    fn right_shift_32(el: DataType, shift: i32) -> DataType {
        [el[0] >> shift,
         el[1] >> shift,
         el[2] >> shift,
         el[3] >> shift,
         el[4] >> shift,
         el[5] >> shift,
         el[6] >> shift,
         el[7] >> shift]
    }

    fn left_shift_32(el: DataType, shift: i32) -> DataType {
        [el[0] << shift,
         el[1] << shift,
         el[2] << shift,
         el[3] << shift,
         el[4] << shift,
         el[5] << shift,
         el[6] << shift,
         el[7] << shift]
    }

    fn op_or(left: DataType, right: DataType) -> DataType {
        [left[0] | right[0],
         left[1] | right[1],
         left[2] | right[2],
         left[3] | right[3],
         left[4] | right[4],
         left[5] | right[5],
         left[6] | right[6],
         left[7] | right[7]]

    }

    fn op_and(left: DataType, right: DataType) -> DataType {
        [left[0] & right[0],
         left[1] & right[1],
         left[2] & right[2],
         left[3] & right[3],
         left[4] & right[4],
         left[5] & right[5],
         left[6] & right[6],
         left[7] & right[7]]
    }

    unsafe fn load_unaligned(addr: *const DataType) -> DataType {
        *addr
    }

    unsafe fn store_unaligned(addr: *mut DataType, data: DataType) {
        *addr = data;
    }

    fn or_collapse_to_u32(accumulator: DataType) -> u32 {
         ((accumulator[0] | accumulator[1]) | (accumulator[2] | accumulator[3]))
       | ((accumulator[4] | accumulator[5]) | (accumulator[6] | accumulator[7]))
    }

    fn compute_delta(curr: DataType, prev: DataType) -> DataType {
        [
            curr[0].wrapping_sub(prev[7]),
            curr[1].wrapping_sub(curr[0]),
            curr[2].wrapping_sub(curr[1]),
            curr[3].wrapping_sub(curr[2]),
            curr[4].wrapping_sub(curr[3]),
            curr[5].wrapping_sub(curr[4]),
            curr[6].wrapping_sub(curr[5]),
            curr[7].wrapping_sub(curr[6])
        ]
    }

    fn integrate_delta(offset: DataType, delta: DataType) -> DataType {
        let el0 = offset[7].wrapping_add(delta[0]);
        let el1 = el0.wrapping_add(delta[1]);
        let el2 = el1.wrapping_add(delta[2]);
        let el3 = el2.wrapping_add(delta[3]);
        let el4 = el3.wrapping_add(delta[4]);
        let el5 = el4.wrapping_add(delta[5]);
        let el6 = el5.wrapping_add(delta[6]);
        let el7 = el6.wrapping_add(delta[7]);
        [el0, el1, el2, el3, el4, el5, el6, el7]
    }

    // The `cfg(any(debug, not(debug)))` is here to put an attribute that has no effect.
    //
    // For other bitpacker, we enable specific CPU instruction set, but for the
    // scalar bitpacker none is required.
    declare_bitpacker!(cfg(any(debug, not(debug))) );

    impl Available for UnsafeBitPackerImpl {
        fn available() -> bool {
            true
        }
    }
}

enum InstructionSet {
    #[cfg(target_arch = "x86_64")]
    AVX2,
    Scalar
}

/// `BitPacker8x` packs integers in groups of 8. This gives an opportunity
/// to leverage `AVX2` instructions to encode and decode the stream.
/// One block must contain `256 integers`.
pub struct BitPacker8x(InstructionSet);

impl BitPacker for BitPacker8x {

    const BLOCK_LEN: usize = BLOCK_LEN;

    fn new() -> Self {
        #[cfg(target_arch = "x86_64")]
        {
            if avx2::UnsafeBitPackerImpl::available() {
                return BitPacker8x(InstructionSet::AVX2);
            }
        }
        BitPacker8x(InstructionSet::Scalar)
    }

    fn compress(&self, decompressed: &[u32], compressed: &mut [u8], num_bits: u8) -> usize {
        unsafe {
            match self.0 {
                #[cfg(target_arch = "x86_64")]
                InstructionSet::AVX2 =>
                    avx2::UnsafeBitPackerImpl::compress(decompressed, compressed, num_bits),
                InstructionSet::Scalar =>
                    scalar::UnsafeBitPackerImpl::compress(decompressed, compressed, num_bits)
            }

        }
    }

    fn compress_sorted(&self, initial: u32, decompressed: &[u32], compressed: &mut [u8], num_bits: u8) -> usize {
        unsafe {
            match self.0 {
                #[cfg(target_arch = "x86_64")]
                InstructionSet::AVX2 =>
                    avx2::UnsafeBitPackerImpl::compress_sorted(initial, decompressed, compressed, num_bits),
                InstructionSet::Scalar =>
                    scalar::UnsafeBitPackerImpl::compress_sorted(initial, decompressed, compressed, num_bits)
            }

        }
    }

    fn decompress(&self, compressed: &[u8], decompressed: &mut [u32], num_bits: u8) -> usize {
        unsafe {
            match self.0 {
                #[cfg(target_arch = "x86_64")]
                InstructionSet::AVX2 =>
                    avx2::UnsafeBitPackerImpl::decompress(compressed, decompressed, num_bits),
                InstructionSet::Scalar =>
                    scalar::UnsafeBitPackerImpl::decompress(compressed, decompressed, num_bits)
            }
        }
    }

    fn decompress_sorted(&self, initial: u32, compressed: &[u8], decompressed: &mut [u32], num_bits: u8) -> usize {
        unsafe {
            match self.0 {
                #[cfg(target_arch = "x86_64")]
                InstructionSet::AVX2 =>
                    avx2::UnsafeBitPackerImpl::decompress_sorted(initial, compressed, decompressed, num_bits),
                InstructionSet::Scalar =>
                    scalar::UnsafeBitPackerImpl::decompress_sorted(initial, compressed, decompressed, num_bits)
            }
        }
    }

    fn num_bits(&self, decompressed: &[u32]) -> u8 {
        unsafe {
            match self.0 {
                #[cfg(target_arch = "x86_64")]
                InstructionSet::AVX2 =>
                    avx2::UnsafeBitPackerImpl::num_bits(decompressed),
                InstructionSet::Scalar =>
                    scalar::UnsafeBitPackerImpl::num_bits(decompressed)
            }
        }
    }

    fn num_bits_sorted(&self, initial: u32, decompressed: &[u32]) -> u8 {
        unsafe {
            match self.0 {
                #[cfg(target_arch = "x86_64")]
                InstructionSet::AVX2 =>
                    avx2::UnsafeBitPackerImpl::num_bits_sorted(initial, decompressed),
                InstructionSet::Scalar =>
                    scalar::UnsafeBitPackerImpl::num_bits_sorted(initial, decompressed)
            }
        }
    }
}


#[cfg(target_arch = "x86_64")]
#[cfg(test)]
mod tests {
    use Available;
    use super::{scalar, avx2};
    use tests::test_util_compatible;
    use super::BLOCK_LEN;

    #[test]
    fn test_compatible() {
        if avx2::UnsafeBitPackerImpl::available() {
            test_util_compatible::<scalar::UnsafeBitPackerImpl, avx2::UnsafeBitPackerImpl>(BLOCK_LEN);
        }
    }
}