1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Bitcoin Hashes Library
// Written in 2018 by
//   Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # SHA256d

use core::str;

use sha256;
use Hash as HashTrait;
use Error;

/// Output of the SHA256d hash function
#[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
pub struct Hash([u8; 32]);

hex_fmt_impl!(Debug, Hash);
hex_fmt_impl!(Display, Hash);
hex_fmt_impl!(LowerHex, Hash);
index_impl!(Hash);
serde_impl!(Hash, 32);
borrow_slice_impl!(Hash);

impl str::FromStr for Hash {
    type Err = ::hex::Error;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        ::hex::FromHex::from_hex(s)
    }
}

impl HashTrait for Hash {
    type Engine = sha256::HashEngine;
    type Inner = [u8; 32];

    fn engine() -> sha256::HashEngine {
        sha256::Hash::engine()
    }

    fn from_engine(e: sha256::HashEngine) -> Hash {
        let sha2 = sha256::Hash::from_engine(e);
        let sha2d = sha256::Hash::hash(&sha2[..]);

        let mut ret = [0; 32];
        ret.copy_from_slice(&sha2d[..]);
        Hash(ret)
    }

    const LEN: usize = 32;

    fn from_slice(sl: &[u8]) -> Result<Hash, Error> {
        if sl.len() != 32 {
            Err(Error::InvalidLength(Self::LEN, sl.len()))
        } else {
            let mut ret = [0; 32];
            ret.copy_from_slice(sl);
            Ok(Hash(ret))
        }
    }

    const DISPLAY_BACKWARD: bool = true;

    fn into_inner(self) -> Self::Inner {
        self.0
    }

    fn from_inner(inner: Self::Inner) -> Self {
        Hash(inner)
    }
}

#[cfg(test)]
mod tests {
    use sha256d;
    use hex::{FromHex, ToHex};
    use Hash;
    use HashEngine;

#[derive(Clone)]
    struct Test {
input: &'static str,
           output: Vec<u8>,
           output_str: &'static str,
    }

#[test]
    fn test() {
        let tests = vec![
            // Test vector copied out of rust-bitcoin
            Test {
                input: "",
                output: vec![
                    0x5d, 0xf6, 0xe0, 0xe2, 0x76, 0x13, 0x59, 0xd3,
                    0x0a, 0x82, 0x75, 0x05, 0x8e, 0x29, 0x9f, 0xcc,
                    0x03, 0x81, 0x53, 0x45, 0x45, 0xf5, 0x5c, 0xf4,
                    0x3e, 0x41, 0x98, 0x3f, 0x5d, 0x4c, 0x94, 0x56,
                ],
                output_str: "56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d",
            },
        ];

        for test in tests {
            // Hash through high-level API, check hex encoding/decoding
            let hash = sha256d::Hash::hash(&test.input.as_bytes());
            assert_eq!(hash, sha256d::Hash::from_hex(test.output_str).expect("parse hex"));
            assert_eq!(&hash[..], &test.output[..]);
            assert_eq!(&hash.to_hex(), &test.output_str);

            // Hash through engine, checking that we can input byte by byte
            let mut engine = sha256d::Hash::engine();
            for ch in test.input.as_bytes() {
                engine.input(&[*ch]);
            }
            let manual_hash = sha256d::Hash::from_engine(engine);
            assert_eq!(hash, manual_hash);
            assert_eq!(hash.into_inner()[..].as_ref(), test.output.as_slice());
        }
    }

    #[cfg(feature="serde")]
    #[test]
    fn sha256_serde() {
        use serde_test::{Configure, Token, assert_tokens};

        static HASH_BYTES: [u8; 32] = [
            0xef, 0x53, 0x7f, 0x25, 0xc8, 0x95, 0xbf, 0xa7,
            0x82, 0x52, 0x65, 0x29, 0xa9, 0xb6, 0x3d, 0x97,
            0xaa, 0x63, 0x15, 0x64, 0xd5, 0xd7, 0x89, 0xc2,
            0xb7, 0x65, 0x44, 0x8c, 0x86, 0x35, 0xfb, 0x6c,
        ];

        let hash = sha256d::Hash::from_slice(&HASH_BYTES).expect("right number of bytes");
        assert_tokens(&hash.compact(), &[Token::BorrowedBytes(&HASH_BYTES[..])]);
        assert_tokens(&hash.readable(), &[Token::Str("6cfb35868c4465b7c289d7d5641563aa973db6a929655282a7bf95c8257f53ef")]);
    }
}

#[cfg(all(test, feature="unstable"))]
mod benches {
    use test::Bencher;

    use sha256d;
    use Hash;
    use HashEngine;

    #[bench]
    pub fn sha256d_10(bh: & mut Bencher) {
        let mut engine = sha256d::Hash::engine();
        let bytes = [1u8; 10];
        bh.iter( || {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

    #[bench]
    pub fn sha256d_1k(bh: & mut Bencher) {
        let mut engine = sha256d::Hash::engine();
        let bytes = [1u8; 1024];
        bh.iter( || {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

    #[bench]
    pub fn sha256d_64k(bh: & mut Bencher) {
        let mut engine = sha256d::Hash::engine();
        let bytes = [1u8; 65536];
        bh.iter( || {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }
}